Quantifying Diurnal Cloud Radiative Effects by Cloud Type in the Tropical Western Pacific

Casey D. Burleyson Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Casey D. Burleyson in
Current site
Google Scholar
PubMed
Close
,
Charles N. Long Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Charles N. Long in
Current site
Google Scholar
PubMed
Close
, and
Jennifer M. Comstock Pacific Northwest National Laboratory, Richland, Washington

Search for other papers by Jennifer M. Comstock in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Cloud radiative effects are examined using long-term datasets collected at the U.S. Department of Energy’s three Atmospheric Radiation Measurement Program Climate Research Facilities in the tropical western Pacific Ocean. The surface radiation budget, cloud populations, and cloud radiative effects are quantified by partitioning the data by cloud type, time of day, and large-scale modes of variability such as El Niño–Southern Oscillation (ENSO) phase and wet/dry seasons at Darwin, Australia. The novel aspect of this analysis is the breakdown of aggregate cloud radiative effects by cloud type across the diurnal cycle. The Nauru Island (Republic of Nauru) cloud populations and subsequently the surface radiation budget are strongly impacted by ENSO variability, whereas the cloud populations over Manus Island (Papua New Guinea) shift only slightly in response to changes in ENSO phase. The Darwin site exhibits large seasonal monsoon-related variations. When present, deeper convective clouds have a strong influence on the amount of radiation that reaches the surface. Their limited frequency reduces their aggregate radiative impact, however. The largest source of shortwave cloud radiative effects at all three sites comes from low clouds. The observations are used to demonstrate that potential model biases in the amplitude of the diurnal cycle and mean cloud frequency would lead to larger errors in the surface energy budget when compared with biases in the timing of the diurnal cycle of cloud frequency. These results provide solid benchmarks to evaluate model simulations of cloud radiative effects in the tropics.

Current affiliation: Cooperative Institute for Research in Environmental Sciences, NOAA/Earth Systems Research Laboratory, Boulder, Colorado.

Corresponding author address: Dr. Casey D. Burleyson, Pacific Northwest National Laboratory, P.O. Box 999/MS K9-24, Richland, WA 99352. E-mail: casey.burleyson@pnnl.gov

Abstract

Cloud radiative effects are examined using long-term datasets collected at the U.S. Department of Energy’s three Atmospheric Radiation Measurement Program Climate Research Facilities in the tropical western Pacific Ocean. The surface radiation budget, cloud populations, and cloud radiative effects are quantified by partitioning the data by cloud type, time of day, and large-scale modes of variability such as El Niño–Southern Oscillation (ENSO) phase and wet/dry seasons at Darwin, Australia. The novel aspect of this analysis is the breakdown of aggregate cloud radiative effects by cloud type across the diurnal cycle. The Nauru Island (Republic of Nauru) cloud populations and subsequently the surface radiation budget are strongly impacted by ENSO variability, whereas the cloud populations over Manus Island (Papua New Guinea) shift only slightly in response to changes in ENSO phase. The Darwin site exhibits large seasonal monsoon-related variations. When present, deeper convective clouds have a strong influence on the amount of radiation that reaches the surface. Their limited frequency reduces their aggregate radiative impact, however. The largest source of shortwave cloud radiative effects at all three sites comes from low clouds. The observations are used to demonstrate that potential model biases in the amplitude of the diurnal cycle and mean cloud frequency would lead to larger errors in the surface energy budget when compared with biases in the timing of the diurnal cycle of cloud frequency. These results provide solid benchmarks to evaluate model simulations of cloud radiative effects in the tropics.

Current affiliation: Cooperative Institute for Research in Environmental Sciences, NOAA/Earth Systems Research Laboratory, Boulder, Colorado.

Corresponding author address: Dr. Casey D. Burleyson, Pacific Northwest National Laboratory, P.O. Box 999/MS K9-24, Richland, WA 99352. E-mail: casey.burleyson@pnnl.gov
Save
  • Arakawa, O., and A. Kitoh, 2005: Rainfall diurnal variation over the Indonesian Maritime Continent simulated by 20 km-mesh GCM. SOLA, 1, 109112, doi:10.2151/sola.2005-029.

    • Search Google Scholar
    • Export Citation
  • Arking, A., 1991: The radiative effects of clouds and their impact on climate. Bull. Amer. Meteor. Soc., 72, 795813, doi:10.1175/1520-0477(1991)072<0795:TREOCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnston, A. G., M. Chelliah, and S. B. Goldenberg, 1997: Documentation of a highly ENSO-related SST region in the equatorial Pacific. Atmos.–Ocean, 35, 367383, doi:10.1080/07055900.1997.9649597.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., and S. E. Yuter, 2013: Observed frequency and intensity of tropical precipitation from instantaneous estimates. J. Geophys. Res. Atmos., 118, 95349551, doi:10.1002/jgrd.50694.

    • Search Google Scholar
    • Export Citation
  • Biasutti, M., S. E. Yuter, C. D. Burleyson, and A. H. Sobel, 2012: Very high resolution rainfall patterns measured by TRMM Precipitation Radar: Seasonal and diurnal cycles. Climate Dyn., 39, 239258, doi:10.1007/s00382-011-1146-6.

    • Search Google Scholar
    • Export Citation
  • Cess, R. D., M. Zhang, B. A. Wielicki, D. F. Young, X.-L. Zhou, and Y. Nikitenko, 2001: The influence of the 1998 El Niño upon cloud-radiative forcing over the Pacific warm pool. J. Climate, 14, 21292137, doi:10.1175/1520-0442(2001)014<2129:TIOTEN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, J., B. E. Carlson, and A. D. Del Genio, 2002: Evidence for strengthening of the tropical general circulation in the 1990s. Science, 295, 838841, doi:10.1126/science.1065835.

    • Search Google Scholar
    • Export Citation
  • Chen, S. S., and R. A. Houze Jr., 1997: Diurnal variation and life-cycle of deep convective systems over the tropical Pacific warm pool. Quart. J. Roy. Meteor. Soc., 123, 357388, doi:10.1002/qj.49712353806.

    • Search Google Scholar
    • Export Citation
  • Chen, T., W. B. Rossow, and Y. Zhang, 2000: Radiative effects of cloud-type variations. J. Climate, 13, 264286, doi:10.1175/1520-0442(2000)013<0264:REOCTV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clothiaux, E. E., and Coauthors, 2001: The ARM Millimeter Wave Cloud Radars (MMCRs) and the Active Remote Sensing of Clouds (ARSCL) Value Added Product (VAP). DOE Tech. Memo. ARM VAP-002.1, 56 pp. [Available online at https://www.arm.gov/publications/tech_reports/arm-vap-002-1.pdf.]

  • Colman, R., 2003: A comparison of climate feedbacks in general circulation models. Climate Dyn., 20, 865873, doi:10.1007/s00382-003-0310-z.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., T. P. Ackerman, and G. G. Mace, 2002: Ground-based lidar and radar remote sensing of tropical cirrus clouds at Nauru Island: Cloud statistics and radiative impacts. J. Geophys. Res., 107, 4714, doi:10.1029/2002JD002203.

    • Search Google Scholar
    • Export Citation
  • Comstock, J. M., A. Protat, S. A. McFarlane, J. Delanoe, and M. Deng, 2013: Assessment of uncertainty in cloud radiative effects and heating rates through retrieval algorithm differences: Analysis using 3 years of ARM data at Darwin, Australia. J. Geophys. Res. Atmos., 118, 45494571, doi:10.1002/jgrd.50404.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2001: Global precipitation and thunderstorm frequencies. Part I: Seasonal and interannual variations. J. Climate, 14, 10921111, doi:10.1175/1520-0442(2001)014<1092:GPATFP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dai, A., 2006: Precipitation characteristics in eighteen coupled climate models. J. Climate, 19, 46054630, doi:10.1175/JCLI3884.1.

  • Dhuria, H. L., and H. L. Kyle, 1990: Cloud types and the tropical Earth radiation budget. J. Climate, 3, 14091434, doi:10.1175/1520-0442(1990)003<1409:CTATTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dufresne, J.-L., and S. Bony, 2008: An assessment of the primary sources of spread of global warming estimates from coupled atmosphere–ocean models. J. Climate, 21, 51355144, doi:10.1175/2008JCLI2239.1.

    • Search Google Scholar
    • Export Citation
  • Dupont, J.-C., M. Haeffelin, Y. Morille, J. M. Comstock, C. Flynn, C. N. Long, C. Sivaraman, and R. K. Newson, 2011: Cloud properties derived from two lidars over the ARM SGP site. Geophys. Res. Lett., 38, L08814, doi:10.1029/2010GL046274.

    • Search Google Scholar
    • Export Citation
  • Govekar, P. D., C. Jakob, M. J. Reeder, and J. Haynes, 2011: The three-dimensional distribution of clouds around Southern Hemisphere extratropical cyclones. Geophys. Res. Lett., 38, L21805, doi:10.1029/2011GL049091.

    • Search Google Scholar
    • Export Citation
  • Hartmann, D. L., M. E. Ockert-Bell, and M. L. Michelson, 1992: The effect of cloud type on Earth’s energy balance: Global analysis. J. Climate, 5, 12811304, doi:10.1175/1520-0442(1992)005<1281:TEOCTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jakob, C., G. Tselioudis, and T. Hume, 2005: The radiative, cloud, and thermodynamic properties of major tropical western Pacific cloud regimes. J. Climate, 18, 12031215, doi:10.1175/JCLI3326.1.

    • Search Google Scholar
    • Export Citation
  • Jensen, M. P., and A. D. Del Genio, 2003: Radiative and microphysical characteristics of deep convective systems in the tropical western Pacific. J. Appl. Meteor., 42, 12341254, doi:10.1175/1520-0450(2003)042<1234:RAMCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. H., T. M. Rickenback, S. A. Rutledge, P. E. Ciesielski, and W. H. Schubert, 1999: Trimodal characteristics of tropical convection. J. Climate, 12, 23972418, doi:10.1175/1520-0442(1999)012<2397:TCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Klein, S. A., Y. Zhang, M. D. Zelinka, R. Pincus, J. Boyle, and P. J. Gleckler, 2013: Are climate model simulations of clouds improving? An evaluation using the ISCCP simulator. J. Geophys. Res. Atmos., 118, 13291342, doi:10.1002/jgrd.50141.

    • Search Google Scholar
    • Export Citation
  • Kuang, Z., Y. Jiang, and Y. L. Yung, 1998: Cloud optical thickness variations during 1983–1991: Solar cycle or ENSO? Geophys. Res. Lett., 25, 14151417, doi:10.1029/98GL00471.

    • Search Google Scholar
    • Export Citation
  • Li, J.-L. F., and Coauthors, 2012: An observationally based evaluation of cloud ice water in CMIP3 and CMIP5 GCMs and contemporary reanalyses using contemporary satellite data. J. Geophys. Res., 117, D16105, doi:10.1029/2012JD017640.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. Manalo-Smith, and T. Wong, 2009: Toward optimal closure of the Earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, doi:10.1175/2008JCLI2637.1.

    • Search Google Scholar
    • Export Citation
  • Long, C. N., and T. P. Ackerman, 2000: Identification of clear skies from broadband pyranometer measurements and calculation of downwelling shortwave cloud effects. J. Geophys. Res., 105, 15 60915 626, doi:10.1029/2000JD900077.

    • Search Google Scholar
    • Export Citation
  • Long, C. N., and D. D. Turner, 2008: A method for continuous estimation of clear-sky downwelling longwave radiative flux developed using ARM surface measurements. J. Geophys. Res., 113, D18206, doi:10.1029/2008JD009936.

    • Search Google Scholar
    • Export Citation
  • Long, C. N., and Coauthors, 2013: ARM research in the equatorial western Pacific: A decade and counting. Bull. Amer. Meteor. Soc., 94, 695708, doi:10.1175/BAMS-D-11-00137.1.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., S. Benson, and S. Kato, 2006: Cloud radiative forcing at the Atmospheric Radiation Measurement Program Climate Research Facility: 2. Vertical redistribution of radiant energy by clouds. J. Geophys. Res., 111, D11S91, doi:10.1029/2005JD005922.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., Q. Q. Zhang, M. Vaughan, R. Marchand, G. Stephens, C. Trepte, and D. Winker, 2009: A description of hydrometeor layer occurrence statistics derived from the first year of merged CloudSat and CALIPSO data. J. Geophys. Res., 114, D00A26, doi:10.1029/2007JD009755.

    • Search Google Scholar
    • Export Citation
  • Mather, J. H., T. P. Ackerman, W. E. Clements, F. J. Barnes, M. D. Ivey, L. D. Hatfield, and R. M. Reynolds, 1998: An atmospheric radiation and cloud station in the tropical western Pacific. Bull. Amer. Meteor. Soc., 79, 627642, doi:10.1175/1520-0477(1998)079<0627:AARACS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McFarlane, S. A., C. N. Long, and D. M. Flynn, 2005: Impact of island-induced clouds on surface measurements: Analysis of the ARM Nauru Island Effect Study data. J. Appl. Meteor., 44, 10451065, doi:10.1175/JAM2241.1.

    • Search Google Scholar
    • Export Citation
  • McFarlane, S. A., C. N. Long, and J. Flaherty, 2013: A climatology of surface radiative effects at the ARM tropical western Pacific sites. J. Appl. Meteor. Climatol., 52, 9961013, doi:10.1175/JAMC-D-12-0189.1.

    • Search Google Scholar
    • Export Citation
  • Morille, Y., M. Haeffelin, P. Drobinski, and J. Pelon, 2007: STRAT: An automated algorithm to retrieve the vertical structure of the atmosphere from single-channel lidar data. J. Atmos. Oceanic Technol., 24, 761775, doi:10.1175/JTECH2008.1.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475, doi:10.1175/1520-0442-16.10.1456.

    • Search Google Scholar
    • Export Citation
  • Pope, M., C. Jakob, and M. J. Reeder, 2009: Regimes of the north Australian wet season. J. Climate, 22, 66996715, doi:10.1175/2009JCLI3057.1.

    • Search Google Scholar
    • Export Citation
  • Randall, D., A. Harshvardhan, D. A. Dazlich, and T. G. Corsetti, 1989: Interactions among radiation, convection, and large-scale dynamics in a general circulation model. J. Atmos. Sci., 46, 19431970, doi:10.1175/1520-0469(1989)046<1943:IARCAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sato, T., H. Miura, M. Satoh, Y. N. Takayabu, and Y. Wang, 2009: Diurnal cycle of precipitation in the tropics simulated in a global cloud-resolving model. J. Climate, 22, 48094826, doi:10.1175/2009JCLI2890.1.

    • Search Google Scholar
    • Export Citation
  • Schumacher, C., and R. A. Houze Jr., 2006: Stratiform precipitation production over sub-Saharan Africa and the tropical east Atlantic as observed by TRMM. Quart. J. Roy. Meteor. Soc., 132, 22352255, doi:10.1256/qj.05.121.

    • Search Google Scholar
    • Export Citation
  • Slingo, A., and J. M. Slingo, 1988: The response of a general circulation model to cloud longwave radiative forcing. I: Introduction and initial experiments. Quart. J. Roy. Meteor. Soc., 114, 10271062, doi:10.1002/qj.49711448209.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., 2000: The diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere. Geophys. Res. Lett., 27, 21732176, doi:10.1029/2000GL011436.

    • Search Google Scholar
    • Export Citation
  • Soden, B. J., and I. M. Held, 2006: An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Climate, 19, 33543360, doi:10.1175/JCLI3799.1.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18, 237273, doi:10.1175/JCLI-3243.1.

  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, doi:10.1175/BAMS-83-12-1771.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., and Coauthors, 2013: Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX Radiation Panel. Bull. Amer. Meteor. Soc., 94, 10311049, doi:10.1175/BAMS-D-12-00117.1.

    • Search Google Scholar
    • Export Citation
  • Su, H., and Coauthors, 2013: Diagnosis of regime-dependent cloud simulation errors in CMIP5 models using A-Train satellite observations and reanalysis data. J. Geophys. Res., 118, 27622780, doi:10.1029/2012JD018575.

    • Search Google Scholar
    • Export Citation
  • Thorsen, T. J., Q. Fu, J. M. Comstock, C. Sivaraman, M. A. Vaughan, D. M. Winker, and D. D. Turner, 2013: Macrophysical properties of tropical cirrus clouds from the CALIPSO satellite and from ground-based micropulse and Raman lidars. J. Geophys. Res. Atmos., 118, 92099220, doi:10.1002/jgrd.50691.

    • Search Google Scholar
    • Export Citation
  • Tian, B., B. J. Soden, and X. Wu, 2004: Diurnal cycle of convection, clouds, and water vapor in the tropical upper troposphere: Satellites versus a general circulation model. J. Geophys. Res., 109, D10101, doi:10.1029/2003JD004117.

    • Search Google Scholar
    • Export Citation
  • Tselioudis, G., and W. B. Rossow, 2006: Climate feedback implied by observed radiation and precipitation changes with midlatitude storm strength and frequency. Geophys. Res. Lett., 33, L02704, doi:10.1029/2005GL024513.

    • Search Google Scholar
    • Export Citation
  • Wang, C., 2002: Atmospheric circulation cells associated with the El Niño–Southern Oscillation. J. Climate, 15, 399419, doi:10.1175/1520-0442(2002)015<0399:ACCAWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, C., R. H. Weisberg, and J. I. Virmani, 1999: Western Pacific interannual variability associated with the El Niño–Southern Oscillation. J. Geophys. Res. Atmos., 104, 51315149, doi:10.1029/1998JC900090.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., L. Zhou, and K. Hamilton, 2007: Effect of convective entrainment/detrainment on simulation of tropical precipitation diurnal cycle. Mon. Wea. Rev., 135, 567585, doi:10.1175/MWR3308.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., C. N. Long, J. H. Mather, and X. Liu, 2011: Convective signals from surface measurements at ARM tropical western Pacific site: Manus. Climate Dyn., 36, 431449, doi:10.1007/s00382-009-0736-z.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., and K. Sassen, 2001: Cloud type and macrophysical property retrieval using multiple remote sensors. J. Appl. Meteor., 40, 16651682, doi:10.1175/1520-0450(2001)040<1665:CTAMPR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Webb, M., and Coauthors, 2006: On the contribution of local feedback mechanisms to the range of climate sensitivity in two GCM ensembles. Climate Dyn., 27, 1738, doi:10.1007/s00382-006-0111-2.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. A., and Coauthors, 2002: Evidence for large decadal variability in the tropical mean radiative energy budget. Science, 295, 841844, doi:10.1126/science.1065837.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., C. Liu, D. J. Cecil, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571071, doi:10.1175/BAMS-87-8-1057.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2475 1988 97
PDF Downloads 407 92 7