The Dependence of QPF on the Choice of Boundary- and Surface-Layer Parameterization for a Lake-Effect Snowstorm

Robert Conrick Research Experience for Undergraduates Program, National Weather Center, Norman, Oklahoma, and Indiana University, Bloomington, Indiana

Search for other papers by Robert Conrick in
Current site
Google Scholar
PubMed
Close
,
Heather Dawn Reeves NOAA/OAR/National Severe Storms Laboratory, and Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Heather Dawn Reeves in
Current site
Google Scholar
PubMed
Close
, and
Shiyuan Zhong Michigan State University, Lansing, Michigan

Search for other papers by Shiyuan Zhong in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Six forecasts of a lake-effect-snow event off Lake Erie were conducted using the Weather Research and Forecasting Model to determine how the quantitative precipitation forecast (QPF) was affected when the boundary- and surface-layer parameterization schemes were changed. These forecasts showed strong variability, with differences in liquid-equivalent precipitation maxima in excess of 20 mm over a 6-h period. The quasi-normal scale elimination (QNSE) schemes produced the highest accumulations, and the Mellor–Yamada–Nakanishi–Niino (MYNN) schemes produced the lowest. Differences in precipitation were primarily due to different sensible heat flux FH and moisture flux FQ off the lake, with lower FH and FQ in MYNN leading to comparatively weak low-level instability and, consequently, reduced ascent and production of hydrometeors. The different FH and FQ were found to have two causes. In QNSE, the higher FH and FQ were due to the decision to use a Prandtl number PR of 0.72 (all other schemes use a PR of 1). In MYNN, the lower FH and FQ were due to the manner in which the similarity stability function for heat ψh is functionally dependent on the temperature gradient between the surface and the lowest model layer. It is not known what assumptions are more accurate for environments that are typical for lake-effect snow, but comparisons with available observations and Rapid-Update-Cycle analyses indicated that MYNN had the most accurate results.

Corresponding author address: Heather Dawn Reeves, DOC/NOAA/OAR, National Severe Storms Laboratory, 120 David L. Boren Blvd., Suite 2401, Norman, OK 73072-7319. E-mail: heather.reeves@noaa.gov

Abstract

Six forecasts of a lake-effect-snow event off Lake Erie were conducted using the Weather Research and Forecasting Model to determine how the quantitative precipitation forecast (QPF) was affected when the boundary- and surface-layer parameterization schemes were changed. These forecasts showed strong variability, with differences in liquid-equivalent precipitation maxima in excess of 20 mm over a 6-h period. The quasi-normal scale elimination (QNSE) schemes produced the highest accumulations, and the Mellor–Yamada–Nakanishi–Niino (MYNN) schemes produced the lowest. Differences in precipitation were primarily due to different sensible heat flux FH and moisture flux FQ off the lake, with lower FH and FQ in MYNN leading to comparatively weak low-level instability and, consequently, reduced ascent and production of hydrometeors. The different FH and FQ were found to have two causes. In QNSE, the higher FH and FQ were due to the decision to use a Prandtl number PR of 0.72 (all other schemes use a PR of 1). In MYNN, the lower FH and FQ were due to the manner in which the similarity stability function for heat ψh is functionally dependent on the temperature gradient between the surface and the lowest model layer. It is not known what assumptions are more accurate for environments that are typical for lake-effect snow, but comparisons with available observations and Rapid-Update-Cycle analyses indicated that MYNN had the most accurate results.

Corresponding author address: Heather Dawn Reeves, DOC/NOAA/OAR, National Severe Storms Laboratory, 120 David L. Boren Blvd., Suite 2401, Norman, OK 73072-7319. E-mail: heather.reeves@noaa.gov
Save
  • Ballentine, R. J., 1982: Numerical simulation of land-breeze-induced snowbands along the western shore of Lake Michigan. Mon. Wea. Rev., 110, 15441553, doi:10.1175/1520-0493(1982)110<1544:NSOLBI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ballentine, R. J., A. J. Stamm, E. E. Chermack, G. P. Byrd, and D. Schleede, 1998: Mesoscale model simulations of the 4–5 January 1995 lake-effect snowstorm. Wea. Forecasting, 13, 893920, doi:10.1175/1520-0434(1998)013<0893:MMSOTJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., 1989: An isentropic mesoα-scale analysis system and its sensitivity to aircraft and surface observations. Mon. Wea. Rev., 117, 15861603, doi:10.1175/1520-0493(1989)117<1586:AIMSAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and P. Lacarrere, 1989: Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Wea. Rev., 117, 18721890, doi:10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Braham, R. R., Jr., 1983: The Midwest snow storm of 8–11 December 1977. Mon. Wea. Rev., 111, 253272, doi:10.1175/1520-0493(1983)111<0253:TMSSOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Braham, R. R., Jr., and R. D. Kelly, 1982: Lake-effect snow storms on Lake Michigan, USA. Cloud Dynamics, E. Agee and T. Asai, Eds., D. Reidel, 87–101.

  • Braun, S. A., and W.-K. Tao, 2000: Sensitivity of high-resolution simulations of Hurricane Bob (1991) to planetary boundary layer parameterization. Mon. Wea. Rev., 128, 39413961, doi:10.1175/1520-0493(2000)129<3941:SOHRSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Byrd, G. P., R. A. Anstett, J. E. Heim, and D. M. Usinski, 1991: Mobile sounding observations of lake-effect snowbands in western and central New York. Mon. Wea. Rev., 119, 23232332, doi:10.1175/1520-0493(1991)119<2323:MSOOLE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cordeira, J. M., and N. F. Laird, 2008: The influence of ice cover on two lake-effect snow events over Lake Erie. Mon. Wea. Rev., 136, 27472763, doi:10.1175/2007MWR2310.1.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dyer, A. J., and B. B. Hicks, 1970: Flux-gradient relationships in the constant flux layer. Quart. J. Roy. Meteor. Soc., 96, 715721, doi:10.1002/qj.49709641012.

    • Search Google Scholar
    • Export Citation
  • Ek, M., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of the Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta Model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Forbes, G. S., and J. H. Merritt, 1984: Mesoscale vortices over the Great Lakes in wintertime. Mon. Wea. Rev., 112, 377381, doi:10.1175/1520-0493(1984)112<0377:MVOTGL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gerbush, M. R., D. A. R. Kristovich, and N. F. Laird, 2008: Mesoscale boundary layer and heat flux variations over pack ice-covered Lake Erie. J. Appl. Meteor. Climatol., 47, 668682, doi:10.1175/2007JAMC1479.1.

    • Search Google Scholar
    • Export Citation
  • Han, Z., J. Ueda, and J. An, 2008: Evaluation and intercomparison of meteorological predictions by five MM5-PBL parameterizations in combination with three land-surface models. Atmos. Environ., 42, 233249, doi:10.1016/j.atmosenv.2007.09.053.

    • Search Google Scholar
    • Export Citation
  • Hjelmfelt, M. R., 1990: Numerical study of the influence of environmental conditions on lake-effect snowstorms over Lake Michigan. Mon. Wea. Rev., 118, 138150, doi:10.1175/1520-0493(1990)118<0138:NSOTIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hjelmfelt, M. R., and R. R. Braham Jr., 1983: Numerical simulations of the airflow over Lake Michigan for a major lake-effect snow event. Mon. Wea. Rev., 111, 205219, doi:10.1175/1520-0493(1983)111<0205:NSOTAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holroyd, E. W., III, 1971: Lake-effect cloud bands as seen from weather satellites. J. Atmos. Sci., 28, 11651170, doi:10.1175/1520-0469(1971)028<1165:LECBAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hong, S., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Janjić, Z. I., 2002: Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso Model. NCEP Office Note 437, 61 pp.

  • Janjić, Z. I., T. L. Black, M. E. Pyle, H.-Y. Chuang, E. Rogers, and G. J. DiMego, 2005: The NCEP WRF-NMM core. Preprints, 2005 WRF/MM5 User’s Workshop, Boulder, CO, University Corporation for Atmospheric Research, 2.9. [Available online at http://www2.mmm.ucar.edu/wrf/users/workshops/WS2005/abstracts/Session2/9-Janjic.pdf.]

  • Jiusto, J., and M. Kaplan, 1972: Snowfall from lake-effect storms. Mon. Wea. Rev., 100, 6266, doi:10.1175/1520-0493(1972)100<0062:SFLS>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kelly, R. D., 1982: A single Doppler radar study of horizontal-roll convection in a lake-effect snow storm. J. Atmos. Sci., 39, 15211531, doi:10.1175/1520-0469(1982)039<1521:ASDRSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kelly, R. D., 1984: Horizontal roll and boundary-layer interrelationships observed over Lake Michigan. J. Atmos. Sci., 41, 18161826, doi:10.1175/1520-0469(1984)041<1816:HRABLI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kelly, R. D., 1986: Mesoscale frequencies and seasonal snowfalls for different types of Lake Michigan snow storms. J. Climate Appl. Meteor., 25, 308312, doi:10.1175/1520-0450(1986)025<0308:MFASSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kristovich, D. A. R., and N. F. Laird, 1998: Observations of widespread lake effect cloudiness: Influences of lake surface temperature and upwind conditions. Wea. Forecasting, 13, 811821, doi:10.1175/1520-0434(1998)013<0811:OOWLEC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, X., and Z. Pu, 2008: Sensitivity of numerical simulation of early rapid intensification of Hurricane Emily (2005) to cloud microphysical and planetary boundary layer parameterizations. Mon. Wea. Rev., 136, 48194838, doi:10.1175/2008MWR2366.1.

    • Search Google Scholar
    • Export Citation
  • Lin, Y., and K. E. Mitchell, 2005: The NCEP Stage II/IV hourly precipitation analyses: Development and applications. Preprints, 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., 1.2. [Available online at https://ams.confex.com/ams/pdfpapers/83847.pdf.]

  • Lofgren, B. M., and Y. Zhu, 2000: Surface energy fluxes on the Great Lakes based on satellite-observed surface temperatures 1992 to 1995. J. Great Lakes Res., 26, 305314, doi:10.1016/S0380-1330(00)70694-0.

    • Search Google Scholar
    • Export Citation
  • McMillen, J. D., and W. J. Steenburgh, 2015: Impact of microphysics parameterization on the simulation of the Great Salt Lake effect. Wea. Forecasting, 30, 136152, doi:10.1175/WAF-D-14-00060.1.

    • Search Google Scholar
    • Export Citation
  • Miao, J.-F., and Coauthors, 2008: Evaluation of MM5 mesoscale model at local scale for air quality applications over the Swedish west coast: Influence of PBL and LSM parameterizations. Meteor. Atmos. Phys., 99, 77103, doi:10.1007/s00703-007-0267-2.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2004: An improved Mellor–Yamada Level-3 model with condensation physics: Its design and verification. Bound.-Layer Meteor., 112, 131, doi:10.1023/B:BOUN.0000020164.04146.98.

    • Search Google Scholar
    • Export Citation
  • Niziol, T. A., 1987: Operational forecasting of lake effect snowfall in western and central New York. Wea. Forecasting, 2, 310321, doi:10.1175/1520-0434(1987)002<0310:OFOLES>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Niziol, T. A., W. R. Snyder, and J. S. Waldstreicher, 1995: Winter weather forecasting throughout the eastern United States. Part IV: Lake effect snow. Wea. Forecasting, 10, 6177, doi:10.1175/1520-0434(1995)010<0061:WWFTTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Passarelli, R. E., Jr., and R. R. Braham Jr., 1981: The role of the winter land breeze in the formation of Great Lake snow storms. Bull. Amer. Meteor. Soc., 62, 482492, doi:10.1175/1520-0477(1981)062<0482:TROTWL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Paulson, C. A., 1970: The mathematical representation of wind speed and temperature profiles in the unstable atmospheric surface layer. J. Appl. Meteor., 9, 857861, doi:10.1175/1520-0450(1970)009<0857:TMROWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Peace, R. L., and R. B. Sykes Jr., 1966: Mesoscale study of a lake effect snow storm. Mon. Wea. Rev., 94, 495507, doi:10.1175/1520-0493(1966)094<0495:MSOALE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pleim, J. E., 2007: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteor. Climatol., 46, 13831395, doi:10.1175/JAM2539.1.

    • Search Google Scholar
    • Export Citation
  • Reeves, H. D., and D. T. Dawson II, 2013: The dependence of QPF on the choice of microphysical parameterization for lake-effect snowstorms. J. Appl. Meteor. Climatol., 52, 363377, doi:10.1175/JAMC-D-12-019.1.

    • Search Google Scholar
    • Export Citation
  • Rothrock, H. J., 1969: An aid in forecasting significant lake snows. National Weather Service Central Region Tech. Memo. WBTM CR-30, 12 pp.

  • Shi, J. J., and Coauthors, 2010: WRF simulations of the 20–22 January 2007 snow events over eastern Canada: Comparison with in situ and satellite observations. J. Appl. Meteor. Climatol., 49, 22462266, doi:10.1175/2010JAMC2282.1.

    • Search Google Scholar
    • Export Citation
  • Shin, H. H., and S.-Y. Hong, 2011: Intercomparison of planetary boundary-layer parameterizations in the WRF Model for a single day from CASES-99. Bound.-Layer Meteor., 139, 261281, doi:10.1007/s10546-010-9583-z.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Baker, W. Wang, and J. G. Powers, 2005: A description of the Advanced Research WRF version 2. NCAR Tech. Note NCAR/TN-468+STR, 88 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v2.pdf.]

  • Sousounis, P. J., G. E. Mann, G. S. Young, R. B. Wagenmaker, B. D. Hoggatt, and W. J. Badini, 1999: Forecasting during the Lake-ICE/SNOWBANDS field experiments. Wea. Forecasting, 14, 955975, doi:10.1175/1520-0434(1999)014<0955:FDTLIS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Srinivas, C. V., R. Venkatesan, and A. Bagavath Singh, 2007: Sensitivity of mesoscale simulations of land–sea breeze to boundary layer turbulence parameterization. Atmos. Environ., 41, 25342548, doi:10.1016/j.atmosenv.2006.11.027.

    • Search Google Scholar
    • Export Citation
  • Sukoriansky, S., B. Galperin, and V. Perov, 2006: A quasi-normal scale elimination model of turbulence and its application to stably stratified flows. Nonlinear Processes Geophys., 13, 922, doi:10.5194/npg-13-9-2006.

    • Search Google Scholar
    • Export Citation
  • Swinbank, W. C., 1964: The exponential wind profile. Quart. J. Roy. Meteor. Soc., 90, 119135, doi:10.1002/qj.49709038402.

  • Theeuwes, N. E., G. J. Steeneveld, F. Krikken, and A. A. M. Holtslag, 2010: Mesoscale modeling of lake effect snow over Lake Erie—Sensitivity to convection, microphysics and the water temperature. Adv. Sci. Res., 4, 1522, doi:10.5194/asr-4-15-2010.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vavrus, S., M. Notaro, and A. Zarrin, 2013: The role of ice cover in heavy lake-effect snowstorms over the Great Lakes basin as simulated by RegCM4. Mon. Wea. Rev., 141, 148165, doi:10.1175/MWR-D-12-00107.1.

    • Search Google Scholar
    • Export Citation
  • Wright, D. M., D. J. Posselt, and A. L. Steiner, 2013: Sensitivity of lake-effect snowfall to lake ice cover and temperature in the Great Lakes region. Mon. Wea. Rev., 141, 670689, doi:10.1175/MWR-D-12-00038.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and W.-Z. Zheng, 2004: Diurnal cycles of surface winds and temperatures as simulated by five boundary layer parameterizations. J. Appl. Meteor., 43, 157169, doi:10.1175/1520-0450(2004)043<0157:DCOSWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhong, S., H. In, and C. Clements, 2007: Impact of turbulence, land surface, and radiation parameterization on simulated boundary layer properties in a coastal environment. J. Geophys. Res., 112, D13110, doi:10.1029/2006JD008274.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 835 517 22
PDF Downloads 229 40 3