X-Band Polarimetric and Ka-Band Doppler Spectral Radar Observations of a Graupel-Producing Arctic Mixed-Phase Cloud

Mariko Oue Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Mariko Oue in
Current site
Google Scholar
PubMed
Close
,
Matthew R. Kumjian Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Matthew R. Kumjian in
Current site
Google Scholar
PubMed
Close
,
Yinghui Lu Department of Meteorology, and Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Yinghui Lu in
Current site
Google Scholar
PubMed
Close
,
Zhiyuan Jiang Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Zhiyuan Jiang in
Current site
Google Scholar
PubMed
Close
,
Eugene E. Clothiaux Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Eugene E. Clothiaux in
Current site
Google Scholar
PubMed
Close
,
Johannes Verlinde Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Johannes Verlinde in
Current site
Google Scholar
PubMed
Close
, and
Kultegin Aydin Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Kultegin Aydin in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Characteristics of graupel in an Arctic deep mixed-phase cloud on 7 December 2013 were identified with observations from an X-band scanning polarimetric radar and a Ka-band zenith-pointing radar in conjunction with scattering calculations. The cloud system produced generating cells and strongly sheared precipitation fall streaks. The X-band radar hemispheric RHI observables revealed spatial sorting of polarimetric signatures: decreasing (with increasing range) differential propagation phase shift φDP, negative specific differential phase KDP collocated with negative differential reflectivity ZDR in the upper half of the fall streak, and increasing or near-constant φDP with positive ZDR at the bottom edge of the fall streak. The negative KDP and ZDR, indicating prolate particles with vertically oriented maximum dimensions, were consistent with small, slow-falling conical graupel coexisting with low concentrations of more isometric graupel. The observed negative KDP values were best matched by scattering calculations for small, dense conical graupel with 30°–40° cone angles. The positive KDP and ZDR and the Doppler spectra indicate that large isometric graupel coexisted with a second population of slower-falling rimed platelike particles in the lower half of the fall streak. Through the core of the fall streak, φDP decreased in range while ZDR was slightly positive, indicating that the prolate conical graupel dominated φDP while the isometric larger graupel dominated reflectivity (and thus ZDR). These results demonstrate the capability of polarimetric observables and Doppler spectra to distinguish different growth stages of rimed particles, allowing for the improvement of hydrometeor classification methods.

Corresponding author address: Mariko Oue, Dept. of Meteorology, The Pennsylvania State University, University Park, PA 16802. E-mail: muo15@psu.edu

Abstract

Characteristics of graupel in an Arctic deep mixed-phase cloud on 7 December 2013 were identified with observations from an X-band scanning polarimetric radar and a Ka-band zenith-pointing radar in conjunction with scattering calculations. The cloud system produced generating cells and strongly sheared precipitation fall streaks. The X-band radar hemispheric RHI observables revealed spatial sorting of polarimetric signatures: decreasing (with increasing range) differential propagation phase shift φDP, negative specific differential phase KDP collocated with negative differential reflectivity ZDR in the upper half of the fall streak, and increasing or near-constant φDP with positive ZDR at the bottom edge of the fall streak. The negative KDP and ZDR, indicating prolate particles with vertically oriented maximum dimensions, were consistent with small, slow-falling conical graupel coexisting with low concentrations of more isometric graupel. The observed negative KDP values were best matched by scattering calculations for small, dense conical graupel with 30°–40° cone angles. The positive KDP and ZDR and the Doppler spectra indicate that large isometric graupel coexisted with a second population of slower-falling rimed platelike particles in the lower half of the fall streak. Through the core of the fall streak, φDP decreased in range while ZDR was slightly positive, indicating that the prolate conical graupel dominated φDP while the isometric larger graupel dominated reflectivity (and thus ZDR). These results demonstrate the capability of polarimetric observables and Doppler spectra to distinguish different growth stages of rimed particles, allowing for the improvement of hydrometeor classification methods.

Corresponding author address: Mariko Oue, Dept. of Meteorology, The Pennsylvania State University, University Park, PA 16802. E-mail: muo15@psu.edu
Save
  • Andrić, J., M. R. Kumjian, D. Zrnić, J. M. Straka, and V. Melnikov, 2013: Polarimetric signatures above the melting layer in winter storms: An observational and modeling study. J. Appl. Meteor. Climatol., 52, 682700, doi:10.1175/JAMC-D-12-028.1.

    • Search Google Scholar
    • Export Citation
  • Aydin, K., and T. A. Seliga, 1984: Radar polarimetric backscattering properties of conical graupel. J. Atmos. Sci., 41, 18871892, doi:10.1175/1520-0469(1984)041<1887:RPBPOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bechini, R., L. Baldini, and V. Chandrasekar, 2013: Polarimetric radar observations in the ice region of precipitating clouds at C-band and X-band radar frequencies. J. Appl. Meteor. Climatol., 52, 11471169, doi:10.1175/JAMC-D-12-055.1.

    • Search Google Scholar
    • Export Citation
  • Bharadwaj, N., K. B. Widener, K. L. Johnson, S. Collis, and A. Koontz, 2011: ARM radar infrastructure for global and regional climate study. Proc. 35th Conf. on Radar Meteorology, Pittsburgh, PA, Amer. Meteor. Soc., 16B.4. [Available online at https://ams.confex.com/ams/35Radar/webprogram/Paper191707.html.]

  • Braham, R. R., Jr., 1963: Some measurements of snow pellet bulk-densities. J. Appl. Meteor., 2, 498500, doi:10.1175/1520-0450(1963)002<0498:SMOSPB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications.Cambridge University Press, 636 pp.

  • Bringi, V. N., T. A. Seliga, and S. M. Cherry, 1983: Statistical properties of the dual-polarization differential reflectivity (ZDR) radar signal. IEEE Trans. Geosci. Remote Sens., 21, 215220, doi:10.1109/TGRS.1983.350491.

    • Search Google Scholar
    • Export Citation
  • Bruning, E. C., W. D. Rust, T. J. Schuur, D. R. MacGorman, P. R. Krehbiel, and W. Rison, 2007: Electrical and polarimetric radar observations of a multicell storm in TELEX. Mon. Wea. Rev., 135, 25252544, doi:10.1175/MWR3421.1.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and S. A. Rutledge, 2000: The relationship between precipitation and lightning in tropical island convection: A C-band polarimetric radar study. Mon. Wea. Rev., 128, 26872710, doi:10.1175/1520-0493(2000)128<2687:TRBPAL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., 1995: Interactions among aerosols, clouds, and climate of the Arctic Ocean. Sci. Total Environ., 160–161, 777791, doi:10.1016/0048-9697(95)04411-S.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., W. B. Rossow, D. Randall, and J. L. Schramm, 1996: Overview of Arctic cloud and radiation characteristics. J. Climatol., 9, 17311764, doi:10.1175/1520-0442(1996)009<1731:OOACAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deierling, W., J. Latham, W. A. Petersen, S. Ellis, and H. Christian, 2005: On the relationship of thunderstorm ice hydrometeor characteristics and total lightning measurements. Atmos. Res., 76, 114126, doi:10.1016/j.atmosres.2004.11.023.

    • Search Google Scholar
    • Export Citation
  • Dolan, B., and S. A. Rutledge, 2009: A theory-based hydrometeor identification algorithm for X-band polarimetric radars. J. Atmos. Oceanic Technol., 26, 20712088, doi:10.1175/2009JTECHA1208.1.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations.Dover Publications, 562 pp.

  • Gorgucci, E., G. Scarchilli, and P. Meishner, 1999: A procedure to calibrate multiparameter weather radar using properties of the rain medium. IEEE Trans. Geosci. Remote Sens., 37, 269276, doi:10.1109/36.739161.

    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., P. Tabary, and J. P. du Chatelet, 2006: Data quality of the Meteo-France C-band polarimetric radar. J. Atmos. Oceanic Technol., 23, 13401356, doi:10.1175/JTECH1912.1.

    • Search Google Scholar
    • Export Citation
  • Gunn, K. L. S., and J. S. Marshall, 1955: The effect of wind shear on falling precipitation. J. Meteor., 12, 339349, doi:10.1175/1520-0469(1955)012<0339:TEOWSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harrington, J. Y., T. Reisin, W. R. Cotton, and S. M. Kreidenweis, 1999: Cloud resolving simulations of Arctic stratus: Part II: Transition-season clouds. J. Atmos. Res., 51, 4575, doi:10.1016/S0169-8095(98)00098-2.

    • Search Google Scholar
    • Export Citation
  • Herman, G., and R. Goody, 1976: Formation and persistence of summertime Arctic stratus clouds. J. Atmos. Sci., 33, 1537–1553, doi:10.1175/1520-0469(1976)033<1537:FAPOSA>2.0.CO;2.

  • Heymsfield, A. J., 1978: The characteristics of graupel particles in northeastern Colorado cumulus congestus clouds. J. Atmos. Sci., 35, 284295, doi:10.1175/1520-0469(1978)035<0284:TCOGPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., and M. R. Kumjian, 2015: Microphysical characteristics of overshooting convection from polarimetric radar observations. J. Atmos. Sci., 72, 870891, doi:10.1175/JAS-D-13-0388.1.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., and V. N. Bringi, 1995: An iterative filtering technique for the analysis of copolar differential phase and dual-frequency radar measurements. J. Atmos. Oceanic Technol., 12, 643648, doi:10.1175/1520-0426(1995)012<0643:AIFTFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., V. Chandrasekar, and V. N. Bringi, 1993: Processing and interpretation of coherent dual-polarized radar measurements. J. Atmos. Oceanic Technol., 10, 155164, doi:10.1175/1520-0426(1993)010<0155:PAIOCD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., S. M. Ellis, W.-Y. Chang, S. Rutledge, and M. Dixon, 2014a: Modeling and interpretation of S-band ice crystal depolarization signatures from data obtained by simultaneously transmitting horizontally and vertically polarized fields. J. Appl. Meteor. Climatol., 53, 16591677, doi:10.1175/JAMC-D-13-0158.1.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., S. M. Ellis, W.-Y. Chang, and Y.-C. Liou, 2014b: X-band polarimetric observations of cross coupling in the ice phase of convective storms in Taiwan. J. Appl. Meteor. Climatol., 53, 16781695, doi:10.1175/JAMC-D-13-0360.1.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and I. J. Caylor, 1991: Co-polar correlation measurements of precipitation. Preprints, 25th Conf. on Radar Meteorology, Paris, France, Amer. Meteor. Soc., 650–653.

  • Intrieri, J. M., M. D. Shupe, T. Uttal, and B. J. McCarty, 2002: An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA. J. Geophys. Res., 107, 8030, doi:10.1029/2000JC000423.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., 1989: The interpretation and meteorological application of radar backscatter amplitude ratios at linear polarizations. J. Atmos. Oceanic Technol., 6, 908919, doi:10.1175/1520-0426(1989)006<0908:TIAMAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jayaweera, K., and T. Ohtake, 1973: Concentration of ice crystals in Arctic stratus clouds. J. Rech. Atmos.,7, 199–207.

  • Knight, C. A., and N. C. Knight, 1973: Conical graupel. J. Atmos. Sci., 30, 118124, doi:10.1175/1520-0469(1973)030<0118:CG>2.0.CO;2.

  • Knight, C. A., N. C. Knight, J. E. Dye, and V. Toutenhoofd, 1974: The mechanism of precipitation formation in northeastern Colorado cumulus I: Observations of the precipitation itself. J. Atmos. Sci., 31, 21422147, doi:10.1175/1520-0469(1974)031<2142:TMOPFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuhlman, K. M., C. L. Ziegler, E. R. Mansell, D. R. MacGorman, and J. M. Straka, 2006: Numerically simulated electrification and lightning of the 29 June 2000 STEPS supercell storm. Mon. Wea. Rev., 134, 27342757, doi:10.1175/MWR3217.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2012: The impact of size sorting on the polarimetric radar variables. Mon. Wea. Rev., 69, 20422060, doi:10.1175/JAS-D-11-0125.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. V. Ryzhkov, V. M. Melnikov, and T. J. Schuur, 2010: Rapid-scan super-resolution observations of a cyclic supercell with a dual-polarization WSR-88D. Mon. Wea. Rev., 138, 37623786, doi:10.1175/2010MWR3322.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. V. Ryzhkov, H. D. Reeves, and T. J. Schuur, 2013: A dual-polarization radar signature of hydrometeor refreezing in winter storms. J. Appl. Meteor. Climatol., 52, 25492566, doi:10.1175/JAMC-D-12-0311.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. A. Rutledge, R. M. Rasmussen, P. C. Kennedy, and M. Dixon, 2014: High-resolution polarimetric radar observations of snow-generating cells. J. Appl. Meteor. Climatol., 53, 16361658, doi:10.1175/JAMC-D-13-0312.1.

    • Search Google Scholar
    • Export Citation
  • Lawson, R. P., and P. Zuidema, 2009: Aircraft microphysical and surface-based radar observations of summertime Arctic clouds. J. Atmos. Sci., 66, 35053529, doi:10.1175/2009JAS3177.1.

    • Search Google Scholar
    • Export Citation
  • Liljegren, J. C., E. E. Clothiaux, G. G. Mace, S. Kato, and X. Dong, 2001: A new retrieval for cloud liquid water path using a ground-based microwave radiometer and measurements of cloud temperature. J. Geophys. Res., 106, 14 48514 500, doi:10.1029/2000JD900817.

    • Search Google Scholar
    • Export Citation
  • List, R., 1958: Kennzeichen atmosphärischer Eispartikeln. Z. Angew. Math. Phys., 9, 180192, doi:10.1007/BF01600631.

  • List, R., 1982: Properties and growth of hailstones. Thunderstorm Morphology and Dynamics, Vol. 2, Thunderstorms: A Social, Scientific, and Technological Documentary, E. Kessler, Ed., Environmental Research Laboratory, 409–445.

  • Liu, H., and V. Chandrasekar, 2000: Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Oceanic Technol., 17, 140164, doi:10.1175/1520-0426(2000)017<0140:COHBOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, doi:10.1029/JC079i015p02185.

    • Search Google Scholar
    • Export Citation
  • Melnikov, V. M., and D. S. Zrnić, 2007: Autocorrelation and cross-correlation estimators of polarimetric variables. J. Atmos. Oceanic Technol., 24, 13371350, doi:10.1175/JTECH2054.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and J. A. Milbrandt, 2015: Parameterization of cloud microphysics based on the prediction of bulk ice particle properties. Part I: Scheme description and idealized tests. J. Atmos. Sci., 72, 287–311, doi:10.1175/JAS-D-14-0065.1.

    • Search Google Scholar
    • Export Citation
  • Palucki, J. L., M. I. Biggerstaff, D. R. MacGorman, and T. Schuur, 2011: Comparison between low-flash and non-lightning-producing convective areas within a mature mesoscale convective system. Wea. Forecasting, 26, 468486, doi:10.1175/WAF-D-10-05012.1.

    • Search Google Scholar
    • Export Citation
  • Park, H. S., A. V. Ryzhkov, D. S. Zrnić, and K.-E. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, doi:10.1175/2008WAF2222205.1.

    • Search Google Scholar
    • Export Citation
  • Rambukkange, M. P., J. Verlinde, E. W. Eloranta, C. J. Flynn, and E. E. Clothiaux, 2011: Using Doppler spectra to separate hydrometeor populations and analyze ice precipitation in multilayered mixed-phase clouds. IEEE Geosci. Remote Sens. Lett., 8, 108112, doi:10.1109/LGRS.2010.2052781.

    • Search Google Scholar
    • Export Citation
  • Reinking, R. F., S. Y. Matrosov, R. T. Bruintjes, and B. E. Martner, 1997: Identification of hydrometeors with elliptical and linear polarization Ka-band radar. J. Appl. Meteor., 36, 322339, doi:10.1175/1520-0450(1997)036<0322:IOHWEA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reinking, R. F., S. Y. Matrosov, R. A. Kropfli, and B. W. Bartram, 2002: Evaluation of a 45° slant quasi-linear radar polarization state for distinguishing drizzle droplets, pristine ice crystals, and less regular ice particles. J. Atmos. Oceanic Technol., 19, 296321, doi:10.1175/1520-0426-19.3.296.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., 2007: The impact of beam broadening on the quality of radar polarimetric data. J. Atmos. Oceanic Technol., 24, 729744, doi:10.1175/JTECH2003.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnić, 1998: Discrimination between rain and snow with a polarimetric radar. J. Appl. Meteor., 37, 12281240, doi:10.1175/1520-0450(1998)037<1228:DBRASW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. Pinsky, A. Pokrovsky, and A. Khain, 2011: Polarimetric radar observation operator for a cloud model with spectral microphysics. J. Appl. Meteor. Climatol., 50, 873894, doi:10.1175/2010JAMC2363.1.

    • Search Google Scholar
    • Export Citation
  • Schneebeli, M., N. Dawes, M. Lehning, and A. Berne, 2013: High-resolution vertical profiles of X-band polarimetric radar observables during snowfall in the Swiss Alps. J. Appl. Meteor. Climatol., 52, 378394, doi:10.1175/JAMC-D-12-015.1.

    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., and V. N. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15, 6976, doi:10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., and V. N. Bringi, 1978: Differential reflectivity and differential phase shift: Applications in radar meteorology. Radio Sci., 15, 6976, doi:10.1029/RS013i002p00271.

    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., V. N. Bringi, and H. H. Al-Khatib, 1979: Differential reflectivity measurements in rain: First experiments. IEEE Trans. Geosci. Electron., 17, 240244, doi:10.1109/TGE.1979.294652.

    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., V. N. Bringi, and H. H. Al-Khatib, 1981: A preliminary study of comparative measurements of rainfall rate using the differential reflectivity radar technique and a raingage network. J. Appl. Meteor., 20, 13621368, doi:10.1175/1520-0450(1981)020<1362:APSOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., S. Y. Matrosov, and T. Uttal, 2006: Arctic mixed-phase cloud properties derived from surface-based sensors at SHEBA. J. Atmos. Sci., 63, 697711, doi:10.1175/JAS3659.1.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., P. Kollias, P. O. G. Persson, and G. M. McFarquhar, 2008: Vertical motions in Arctic mixed-phase stratiform clouds. J. Atmos. Sci., 65, 13041322, doi:10.1175/2007JAS2479.1.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., and D. S. Zrnić, 1993: An algorithm to deduce hydrometeor types and contents from multiparameter radar data. Preprints, 26th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 513–516.

  • Straka, J. M., D. S. Zrnić, and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 13411372, doi:10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sulia, K. J., and J. Y. Harrington, 2011: Ice aspect ratio influences on mixed-phase clouds: Impacts on phase partitioning in parcel models. J. Geophys. Res., 116, D21309, doi:10.1029/2011JD016298.

    • Search Google Scholar
    • Export Citation
  • Sulia, K. J., H. Morrison, and J. Y. Harrington, 2014: Dynamical and microphysical evolution during mixed-phase cloud glaciation simulated using the bulk adaptive habit prediction model. J. Atmos. Sci., 71, 41584180, doi:10.1175/JAS-D-14-0070.1.

    • Search Google Scholar
    • Export Citation
  • Thompson, E. J., S. A. Rutledge, B. Dolan, V. Chandrasekar, and B. L. Cheong, 2014: A dual-polarization radar hydrometeor classification algorithm for winter precipitation. J. Atmos. Oceanic Technol., 31, 14571481, doi:10.1175/JTECH-D-13-00119.1.

    • Search Google Scholar
    • Export Citation
  • Trömel, S., M. R. Kumjian, A. V. Ryzhkov, C. Simmer, and M. Diederich, 2013: Backscatter differential phase—Estimation and variability. J. Appl. Meteor. Climatol., 52, 25292548, doi:10.1175/JAMC-D-13-0124.1.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., S. A. Clough, J. C. Liljegren, E. E. Clothiaux, K. E. Cady-Pereira, and K. L. Gaustad, 2007: Retrieving liquid water path and precipitable water vapor from the Atmospheric Radiation Measurement (ARM) microwave radiometers. IEEE Trans. Geosci. Remote Sens., 45, 36803690, doi:10.1109/TGRS.2007.903703.

    • Search Google Scholar
    • Export Citation
  • Verlinde, J., M. P. Rambukkange, E. E. Clothiaux, G. M. McFarquhar, and E. W. Eloranta, 2013: Arctic multilayered mixed-phase cloud processes revealed in millimeter wave cloud radar Doppler spectra. J. Geophys. Res., 118, 13 19913 213, doi:10.1002/2013JD020183.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., S. M. Ellis, R. Oye, D. S. Zrnić, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388, doi:10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62, 41514177, doi:10.1175/JAS3615.1.

    • Search Google Scholar
    • Export Citation
  • Yurkin, M. A., and A. G. Hoekstra, 2011: The discrete-dipole-approximation code ADDA: Capabilities and known limitations. J. Quant. Spectrosc. Radiat. Transfer, 112, 22342247, doi:10.1016/j.jqsrt.2011.01.031.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., N. Balakrishnan, C. L. Ziegler, V. N. Bringi, K. Aydin, and T. Matejka, 1993: Polarimetric signatures in the stratiform region of a mesoscale convective system. J. Appl. Meteor., 32, 678693, doi:10.1175/1520-0450(1993)032<0678:PSITSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., R. Raghavan, and V. Chandrasekar, 1994: Observation of copolar correlation coefficient through a bright band at vertical incidence. J. Appl. Meteor., 33, 4552, doi:10.1175/1520-0450(1994)033<0045:OOCCCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., A. Ryzhkov, J. Straka, Y. Liu, and J. Vivekanandan, 2001: Testing a procedure for automatic classification of hydrometeor types. J. Atmos. Oceanic Technol., 18, 892913, doi:10.1175/1520-0426(2001)018<0892:TAPFAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2321 1691 47
PDF Downloads 593 76 8