Climatology, Variability, and Trends in the U.S. Vapor Pressure Deficit, an Important Fire-Related Meteorological Quantity

Richard Seager Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Richard Seager in
Current site
Google Scholar
PubMed
Close
,
Allison Hooks Columbia College, Columbia University, New York, New York

Search for other papers by Allison Hooks in
Current site
Google Scholar
PubMed
Close
,
A. Park Williams Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by A. Park Williams in
Current site
Google Scholar
PubMed
Close
,
Benjamin Cook NASA Goddard Institute for Space Studies, New York, New York

Search for other papers by Benjamin Cook in
Current site
Google Scholar
PubMed
Close
,
Jennifer Nakamura Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Jennifer Nakamura in
Current site
Google Scholar
PubMed
Close
, and
Naomi Henderson Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York

Search for other papers by Naomi Henderson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Unlike the commonly used relative humidity, vapor pressure deficit (VPD) is an absolute measure of the difference between the water vapor content of the air and its saturation value and an accurate metric of the ability of the atmosphere to extract moisture from the land surface. VPD has been shown to be closely related to variability in burned forest areas in the western United States. Here, the climatology, variability, and trends in VPD across the United States are presented. VPD reaches its climatological maximum in summer in the interior southwest United States because of both high temperatures and low vapor pressure under the influence of the northerly, subsiding eastern flank of the Pacific subtropical anticyclone. Maxima of variance of VPD are identified in the Southwest and southern plains in spring and summer and are to a large extent driven by temperature variance, but vapor pressure variance is also important in the Southwest. La Niña–induced circulation anomalies cause subsiding, northerly flow that drives down actual vapor pressure and increases saturation vapor pressure from fall through spring. High spring and summer VPDs can also be caused by reduced precipitation in preceding months, as measured by Bowen ratio anomalies. Case studies of 2002 (the Rodeo–Chediski and Hayman fires, which occurred in Arizona and Colorado, respectively) and 2007 (the Murphy Complex fire, which occurred in Idaho and Nevada) show very high VPDs caused by antecedent surface drying and subsidence warming and drying of the atmosphere. VPD has increased in the southwest United States since 1961, driven by warming and a drop in actual vapor pressure, but has decreased in the northern plains and Midwest, driven by an increase in actual vapor pressure.

Lamont-Doherty Earth Observatory Contribution Number 7899.

Corresponding author address: Richard Seager, Lamont-Doherty Earth Observatory, Columbia University, 61 Rte. 9W, Palisades, NY 10964. E-mail: seager@ldeo.columbia.edu

Abstract

Unlike the commonly used relative humidity, vapor pressure deficit (VPD) is an absolute measure of the difference between the water vapor content of the air and its saturation value and an accurate metric of the ability of the atmosphere to extract moisture from the land surface. VPD has been shown to be closely related to variability in burned forest areas in the western United States. Here, the climatology, variability, and trends in VPD across the United States are presented. VPD reaches its climatological maximum in summer in the interior southwest United States because of both high temperatures and low vapor pressure under the influence of the northerly, subsiding eastern flank of the Pacific subtropical anticyclone. Maxima of variance of VPD are identified in the Southwest and southern plains in spring and summer and are to a large extent driven by temperature variance, but vapor pressure variance is also important in the Southwest. La Niña–induced circulation anomalies cause subsiding, northerly flow that drives down actual vapor pressure and increases saturation vapor pressure from fall through spring. High spring and summer VPDs can also be caused by reduced precipitation in preceding months, as measured by Bowen ratio anomalies. Case studies of 2002 (the Rodeo–Chediski and Hayman fires, which occurred in Arizona and Colorado, respectively) and 2007 (the Murphy Complex fire, which occurred in Idaho and Nevada) show very high VPDs caused by antecedent surface drying and subsidence warming and drying of the atmosphere. VPD has increased in the southwest United States since 1961, driven by warming and a drop in actual vapor pressure, but has decreased in the northern plains and Midwest, driven by an increase in actual vapor pressure.

Lamont-Doherty Earth Observatory Contribution Number 7899.

Corresponding author address: Richard Seager, Lamont-Doherty Earth Observatory, Columbia University, 61 Rte. 9W, Palisades, NY 10964. E-mail: seager@ldeo.columbia.edu
Save
  • Abatzoglou, J. T., and C. A. Kolden, 2013: Relationships between climate and macroscale area burned in the western United States. Int. J. Wildland Fire, 22, 10031020, doi:10.1071/WF13019.

    • Search Google Scholar
    • Export Citation
  • Adams, D., and A. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78, 21972213, doi:10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Allen, C. D., and Coauthors, 2010: A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage., 259, 660684, doi:10.1016/j.foreco.2009.09.001.

    • Search Google Scholar
    • Export Citation
  • Anderson, D. B., 1936: Relative humidity or vapor pressure deficit. Ecology, 17, 277282, doi:10.2307/1931468.

  • Bentz, B. J., and Coauthors, 2010: Climate change and bark beetles of the western United States and Canada: Direct and indirect effects. BioScience, 60, 602613, doi:10.1525/bio.2010.60.8.6.

    • Search Google Scholar
    • Export Citation
  • Cayan, D., T. Das, D. Pierce, T. Barnett, M. Tyree, and A. Gershunova, 2010: Future dryness in the southwest United States and the hydrology of the early 21st century drought. Proc. Natl. Acad. Sci. USA, 107, 21 27121 276, doi:10.1073/pnas.0912391107.

    • Search Google Scholar
    • Export Citation
  • Daly, C., W. P. Gibson, G. H. Taylor, G. L. Johnson, and P. Pasteris, 2000: High quality spatial climate data sets for the United States and beyond. Trans. Amer. Soc. Agric. Biol. Eng., 43, 19571962, doi:10.13031/2013.3101.

    • Search Google Scholar
    • Export Citation
  • Dennison, P. E., S. C. Brewer, J. D. Arnold, and M. A. Moritz, 2014: Large wildfire trends in the western United States, 1984–2011. Geophys. Res. Lett., 41, 2928–2933, doi:10.1002/2014GL059576.

    • Search Google Scholar
    • Export Citation
  • Eidenshink, J., B. Schwind, K. Brewer, Z.-L. Zhu, B. Quayle, and S. Howard, 2007: A project for monitoring trends in burn severity. Fire Ecol., 3, 321, doi:10.4996/fireecology.0301003.

    • Search Google Scholar
    • Export Citation
  • Gaffen, D. J., and R. J. Ross, 1999: Climatology and trends of U.S. surface humidity and temperature. J. Climate, 12, 811828, doi:10.1175/1520-0442(1999)012<0811:CATOUS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gisborne, H. T., 1928: Measuring forest-fire danger in northern Idaho. U.S. Dept. of Agriculture Misc. Publ. 29, 63 pp.

  • Isaac, V., and W. A. van Wijngaarden, 2012: Surface water vapor pressure and temperature trends in North America during 1948–2010. J. Climate, 25, 35993609, doi:10.1175/JCLI-D-11-00003.1.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP–NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247268, doi:10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kumar, A., and M. P. Hoerling, 1998: Annual cycle of Pacific–North American seasonal predictability associated with different phases of ENSO. J. Climate, 11, 32953308, doi:10.1175/1520-0442(1998)011<3295:ACOPNA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Launchbaugh, K., and Coauthors, 2008: Interactions among livestock grazing, vegetation type, and fire behavior in the Murphy Wildland Fire Complex in Idaho and Nevada, July 2007. U.S. Geological Survey Open-File Rep. 2008-1215, 42 pp. [Available online at http://pubs.usgs.gov/of/2008/1214/.]

  • Littell, J. S., D. McKenzie, D. L. Peterson, and A. L. Westerling, 2009: Climate and wildfire area burned in western U.S. ecoprovinces, 1916–2003. Ecol. Appl., 19, 10031021, doi:10.1890/07-1183.1.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res.,109, D07S90, doi:10.1029/2003JD003823.

  • Munns, E. N., 1921: Evaporation and forest fires. Mon. Wea. Rev., 49, 149152, doi:10.1175/1520-0493(1921)49<149:EAFF>2.0.CO;2.

  • Potter, B. E., 2012: Atmospheric interactions with wild land fire behavior—I. Basic surface interactions, vertical profiles and synoptic structures. Int. J. Wildland Fire, 21, 779801, doi:10.1071/WF11128.

    • Search Google Scholar
    • Export Citation
  • Pyne, S. J., 2009: Fire on the fringe. Environ. Res. Lett.,4, 031004, doi:10.1088/1748-9326/4/3/031004.

  • Riley, K. L., J. T. Abatzoglou, I. C. Grenfell, A. E. Klene, and F. A. Heinsch, 2013: The relationship of large fire occurrence with drought and fire danger indices in the western USA, 1984–2008: The role of temporal scale. Int. J. Wildland Fire, 22, 894909, doi:10.1071/WF12149.

    • Search Google Scholar
    • Export Citation
  • Rodell, M., and Coauthors, 2004: The Global Land Data Assimilation System. Bull. Amer. Meteor. Soc., 85, 381394, doi:10.1175/BAMS-85-3-381.

    • Search Google Scholar
    • Export Citation
  • Roy, D. P., L. Boschetti, C. Justice, and J. Ju, 2008: The Collection 5 MODIS Burned Area Product—Global evaluation by comparison with the MODIS Active Fire Product. Remote Sens. Environ., 112, 36903707, doi:10.1016/j.rse.2008.05.013.

    • Search Google Scholar
    • Export Citation
  • Schoennagel, T., T. T. Veblen, and W. H. Rome, 2004: The interaction of fire, fuels and climate across Rocky Mountain forest. BioScience, 54, 661676, doi:10.1641/0006-3568(2004)054[0661:TIOFFA]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seager, R., 2007: The turn-of-the-century North American drought: Dynamics, global context, and prior analogues. J. Climate, 20, 55275552, doi:10.1175/2007JCLI1529.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Harnik, Y. Kushnir, W. Robinson, and J. Miller, 2003a: Mechanisms of hemispherically symmetric climate variability. J. Climate, 16, 29602978, doi:10.1175/1520-0442(2003)016<2960:MOHSCV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seager, R., R. Murtugudde, N. Naik, A. Clement, N. Gordon, and J. Miller, 2003b: Air–sea interaction and the seasonal cycle of the subtropical anticyclones. J. Climate, 16, 19481966, doi:10.1175/1520-0442(2003)016<1948:AIATSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seager, R., N. Harnik, W. A. Robinson, Y. Kushnir, M. Ting, H. P. Huang, and J. Velez, 2005: Mechanisms of ENSO-forcing of hemispherically symmetric precipitation variability. Quart. J. Roy. Meteor. Soc., 131, 15011527, doi:10.1256/qj.04.96.

    • Search Google Scholar
    • Export Citation
  • Seager, R., L. Goddard, J. Nakamura, N. Naik, and D. Lee, 2014a: Dynamical causes of the 2010/11 Texas–northern Mexico drought. J. Hydrometeor., 15, 3968, doi:10.1175/JHM-D-13-024.1.

    • Search Google Scholar
    • Export Citation
  • Seager, R., D. Neelin, I. Simpson, H. Liu, N. Henderson, T. Shaw, Y. Kushnir, and M. Ting, 2014b: Dynamical and thermodynamical causes of large-scale changes in the hydrological cycle over North America in response to global warming. J. Climate, 27, 79217948, doi:10.1175/JCLI-D-14-00153.1.

    • Search Google Scholar
    • Export Citation
  • Sedano, F., and J. T. Randerson, 2014: Vapor pressure deficit controls on fire ignition and fire spread in boreal forest ecosystems. Biogeosci. Discuss., 11, 13091353, doi:10.5194/bgd-11-1309-2014.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and G. G. E. Wood, 2006: Development of a 50-yr high-resolution global dataset of meteorological forcings for land surface modeling. J. Climate, 19, 30883111, doi:10.1175/JCLI3790.1.

    • Search Google Scholar
    • Export Citation
  • Stavros, E. N., J. Abatzoglou, N. K. Larkin, D. McKenzie, and E. A. Steel, 2014: Climate and very large wildland fires in the contiguous western USA. Int. J. Wildland Fire, 23, 899914, doi:10.1071/WF13169.

    • Search Google Scholar
    • Export Citation
  • Stephens, S. L., J. K. Agee, P. Z. Fule, M. P. North, W. H. Romme, T. W. Swetnam, and M. G. Turner, 2013: Managing forests and fire in changing climates. Science, 342, 4142, doi:10.1126/science.1240294.

    • Search Google Scholar
    • Export Citation
  • Weiss, J. L., C. L. Castro, and J. T. Overpeck, 2009: Distinguishing pronounced droughts in the southwestern United States: Seasonality and effects of warmer temperatures. J. Climate, 22, 59185932, doi:10.1175/2009JCLI2905.1.

    • Search Google Scholar
    • Export Citation
  • Westerling, A. L., and B. P. Bryant, 2008: Climate change and wildfire in California. Climatic Change, 87 (Suppl.), 231249, doi:10.1007/s10584-007-9363-z.

    • Search Google Scholar
    • Export Citation
  • Westerling, A. L., A. Gershunov, T. J. Brown, D. R. Cayan, and M. D. Dettinger, 2003: Climate and wildfire in the western United States. Bull. Amer. Meteor. Soc., 84, 595604, doi:10.1175/BAMS-84-5-595.

    • Search Google Scholar
    • Export Citation
  • Westerling, A. L., H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam, 2006: Warming and earlier spring increase western U.S. forest wildfire activity. Science, 313, 940943, doi:10.1126/science.1128834.

    • Search Google Scholar
    • Export Citation
  • Williams, A. P., and Coauthors, 2013: Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Climate Change, 3, 292297, doi:10.1038/nclimate1693.

    • Search Google Scholar
    • Export Citation
  • Williams, A. P., and Coauthors, 2014: Causes and future implications of extreme 2011 atmospheric moisture demand and wildfire in the southwest United States. J. Appl. Meteor. Climatol., 53, 26712684, doi:10.1175/JAMC-D-14-0053.1.

    • Search Google Scholar
    • Export Citation
  • Williams, A. P., and Coauthors, 2015: Correlations between components of the water balance and burned area reveal new insights for predicting forest-fire area in the southwest United States. Int. J. Wildland Fire, 24, 1426, doi:10.1071/WF14023.

    • Search Google Scholar
    • Export Citation
  • Winkler, J. A., B. E. Potter, D. Wilhelm, R. P. Shadbolt, K. Piromsopa, and X. Bian, 2007: Climatological and statistical characteristics of the Haines index for North America. Int. J. Wildland Fire, 16, 139152, doi:10.1071/WF06086.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 8631 3106 149
PDF Downloads 4818 1165 74