Velocity–Azimuth Display Analysis of Doppler Velocity for HIWRAP

Lin Tian NASA Goddard Space Flight Center, Greenbelt, and Goddard Earth Sciences Technology and Research, Morgan State University, Baltimore, Maryland

Search for other papers by Lin Tian in
Current site
Google Scholar
PubMed
Close
,
Gerald M. Heymsfield NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Gerald M. Heymsfield in
Current site
Google Scholar
PubMed
Close
,
Anthony C. Didlake Jr. NASA Goddard Space Flight Center, Greenbelt, Maryland, and Oak Ridge Associated Universities, Oak Ridge, Tennessee

Search for other papers by Anthony C. Didlake Jr. in
Current site
Google Scholar
PubMed
Close
,
Stephen Guimond NASA Goddard Space Flight Center, Greenbelt, and University of Maryland, College Park, College Park, Maryland

Search for other papers by Stephen Guimond in
Current site
Google Scholar
PubMed
Close
, and
Lihua Li NASA Goddard Space Flight Center, Greenbelt, Maryland

Search for other papers by Lihua Li in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The velocity–azimuth display (VAD) analysis technique established for ground-based scanning radar is applied to the NASA High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP). The VAD technique provides a mean vertical profile of the horizontal winds for each complete conical scan of the HIWRAP radar. One advantage of this technique is that it has shown great value for data assimilation and for operational forecasts. Another advantage is that it is computationally inexpensive, which makes it suitable for real-time retrievals. The VAD analysis has been applied to the HIWRAP data collected during NASA’s Genesis and Rapid Intensification Processes (GRIP) mission. The traditional dual-Doppler analysis for deriving wind fields in the nadir plane is also presented and is compared with the VAD analysis. The results show that the along-track winds from the VAD technique and dual-Doppler analysis agree in general. The VAD horizontal winds capture the mean vortex structure of two tropical cyclones, and they are in general agreement with winds from nearby dropsondes. Several assumptions are made for the VAD technique. These assumptions include a stationary platform for each HIWRAP scan and constant vertical velocity of the hydrometeors along each complete scan. As a result, the VAD technique can produce appreciable errors in regions of deep convection such as the eyewall, whereas in stratiform regions the retrieval errors are minimal. Despite these errors, the VAD technique can still adequately capture the larger-scale structure of the hurricane vortex given a sufficient number of flight passes over the storm.

Corresponding author address: Anthony Didlake, NASA Goddard Space Flight Center, Code 612, Greenbelt, MD 20771. E-mail: anthony.didlake@nasa.gov

Abstract

The velocity–azimuth display (VAD) analysis technique established for ground-based scanning radar is applied to the NASA High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP). The VAD technique provides a mean vertical profile of the horizontal winds for each complete conical scan of the HIWRAP radar. One advantage of this technique is that it has shown great value for data assimilation and for operational forecasts. Another advantage is that it is computationally inexpensive, which makes it suitable for real-time retrievals. The VAD analysis has been applied to the HIWRAP data collected during NASA’s Genesis and Rapid Intensification Processes (GRIP) mission. The traditional dual-Doppler analysis for deriving wind fields in the nadir plane is also presented and is compared with the VAD analysis. The results show that the along-track winds from the VAD technique and dual-Doppler analysis agree in general. The VAD horizontal winds capture the mean vortex structure of two tropical cyclones, and they are in general agreement with winds from nearby dropsondes. Several assumptions are made for the VAD technique. These assumptions include a stationary platform for each HIWRAP scan and constant vertical velocity of the hydrometeors along each complete scan. As a result, the VAD technique can produce appreciable errors in regions of deep convection such as the eyewall, whereas in stratiform regions the retrieval errors are minimal. Despite these errors, the VAD technique can still adequately capture the larger-scale structure of the hurricane vortex given a sufficient number of flight passes over the storm.

Corresponding author address: Anthony Didlake, NASA Goddard Space Flight Center, Code 612, Greenbelt, MD 20771. E-mail: anthony.didlake@nasa.gov
Save
  • Armijo, L., 1969: A theory for the determination of wind and precipitation velocities with Doppler radars. J. Atmos. Sci., 26, 570573, doi:10.1175/1520-0469(1969)026<0570:ATFTDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Braun, S., and Coauthors, 2013: NASA’s Genesis and Rapid Intensification Processes (GRIP) field experiment. Bull. Amer. Meteor. Soc., 94, 345363, doi:10.1175/BAMS-D-11-00232.1.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and R. Wexler, 1968: The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteor., 7, 105113, doi:10.1175/1520-0450(1968)007<0105:TDOKPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chong, M., and J. Testud, 1996: Three-dimensional air circulation in a squall line from airborne dual-beam Doppler radar data: A test of coplane methodology software. J. Atmos. Oceanic Technol., 13, 3653, doi:10.1175/1520-0426(1996)013<0036:TDACIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dazhang, T., S. G. Geotis, R. E. Passarelli Jr., A. L. Hansen, and C. I. Frush, 1984: Evaluation of an alternating-PRF method for extending the range of unambiguous Doppler velocity. Preprints, 22nd Conf. on Radar Meteorology, Zurich, Switzerland, Amer. Meteor. Soc., 523–527.

  • Didlake, A. C., Jr., and R. A. Houze Jr., 2009: Convective-scale downdrafts in the principal rainband of Hurricane Katrina (2005). Mon. Wea. Rev., 137, 32693293, doi:10.1175/2009MWR2827.1.

    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., Jr., and R. A. Houze Jr., 2013: Dynamics of the stratiform sector of a tropical cyclone rainband. J. Atmos. Sci., 70, 18911911, doi:10.1175/JAS-D-12-0245.1.

    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., Jr., G. M. Heymsfield, L. Tian, and S. R. Guimond, 2015: The coplane analysis technique for three-dimensional wind retrieval using the HIWRAP airborne Doppler radar. J. Appl. Meteor., 54, 605623, doi:10.1175/JAMC-D-14-0203.1.

    • Search Google Scholar
    • Export Citation
  • Gamache, J. F., 1997: Evaluation of a fully three-dimensional variational Doppler analysis technique. Preprints, 28th Conf. on Radar Meteorology, Austin, TX, Amer. Meteor. Soc., 422–423.

  • Gao, J., M. Xue, A. Shapiro, and K. K. Droegemeier, 1999: A variational method for the analysis of three-dimensional wind fields from two Doppler radars. Mon. Wea. Rev., 127, 21282142, doi:10.1175/1520-0493(1999)127<2128:AVMFTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gao, J., K. K. Droegemeier, J. Gong, and Q. Xu, 2004: A method for retrieving mean horizontal wind profiles from single-Doppler radar observations contaminated by aliasing. Mon. Wea. Rev., 132, 13991409, doi:10.1175/1520-0493-132.1.1399.

    • Search Google Scholar
    • Export Citation
  • Guimond, S. R., L. Tian, G. M. Heymsfield, and S. J. Frasier, 2014: Wind retrieval algorithms for the IWRAP and HIWRAP airborne Doppler radars with applications to hurricanes. J. Atmos. Oceanic Technol., 31, 11891215, doi:10.1175/JTECH-D-13-00140.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., and Coauthors, 1996: The EDOP radar system on the high-altitude NASA ER-2 aircraft. J. Atmos. Oceanic Technol., 13, 795809, doi:10.1175/1520-0426(1996)013<0795:TERSOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, G. M., L. Tian, L. Li, M. McLinden, and J. I. Cervantes, 2013: Airborne radar observations of severe hailstorms: Implications for future spaceborne radar. J. Appl. Meteor. Climatol., 52, 18511867, doi:10.1175/JAMC-D-12-0144.1.

    • Search Google Scholar
    • Export Citation
  • Hildebrand, P. H., and Coauthors, 1996: The ELDORA/ASTRAIA airborne Doppler weather radar: High-resolution observations from TOGA COARE. Bull. Amer. Meteor. Soc., 77, 213232, doi:10.1175/1520-0477(1996)077<0213:TEADWR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., P. H. Hildebrand, and C. L. Frush, 1983: Feasibility test of an airborne pulse-Doppler meteorology radar. J. Climate Appl. Meteor., 22, 744757, doi:10.1175/1520-0450(1983)022<0744:FTOAAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., T. Matejka, and J. D. DuGranrut, 1996: Multi-beam techniques for deriving wind fields from airborne Doppler radars. Meteor. Atmos. Phys., 59, 83104, doi:10.1007/BF01032002.

    • Search Google Scholar
    • Export Citation
  • Lee, W.-C., P. Dodge, F. D. Marks, and P. H. Hildebrand, 1994: Mapping of airborne Doppler radar data. J. Atmos. Oceanic Technol., 11, 572578, doi:10.1175/1520-0426(1994)011<0572:MOADRD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lhermitte, R. M., and D. Atlas, 1961: Precipitation motion by pulse Doppler radar. Proc. Ninth Weather Radar Conf., Kansas City, MO, Amer. Meteor. Soc., 218–223.

  • Li, L., G. M. Heymsfield, J. Carswell, D. Schaubert, J. Creticos, and M. Vega, 2008: High-Altitude Imaging Wind and Rain Airborne Radar (HIWRAP). Proc. IEEE Int. Geoscience and Remote Sensing Symp. (IGARSS) 2008, Boston, MA, IEEE, 354–357.

  • Marks, F. D., and R. A. Houze, 1987: Inner core structure of Hurricane Alicia from airborne Doppler radar observations. J. Atmos. Sci., 44, 12961317, doi:10.1175/1520-0469(1987)044<1296:ICSOHA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matejka, T., and R. C. Srivastava, 1991: An improved version of the extended velocity-azimuth display analysis of single-Doppler radar data. J. Atmos. Oceanic Technol., 8, 453466, doi:10.1175/1520-0426(1991)008<0453:AIVOTE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Michelson, S. A., and N. L. Seaman, 2000: Assimilation of NEXRAD-VAD winds in summertime meteorological simulations over the northeastern United States. J. Appl. Meteor., 39, 367383, doi:10.1175/1520-0450(2000)039<0367:AONVWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miller, L. J., and R. G. Strauch, 1974: A dual Doppler radar method for the determination of wind velocities within precipitating weather systems. Remote Sens. Environ., 3, 219235, doi:10.1016/0034-4257(74)90044-3.

    • Search Google Scholar
    • Export Citation
  • Mohr, C. G., L. J. Miller, R. L. Vaughan, and H. W. Frank, 1986: The merger of mesoscale datasets into a common Cartesian format for efficient and systematic analyses. J. Atmos. Oceanic Technol., 3, 143161, doi:10.1175/1520-0426(1986)003<0143:TMOMDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ray, P. S., D. P. Jorgensen, and S.-L. Wang, 1985: Airborne Doppler radar observations of a convective storm. J. Climate Appl. Meteor., 24, 687698, doi:10.1175/1520-0450(1985)024<0687:ADROOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., S. A. Braun, F. Zhang, and Y. Weng, 2013: Ensemble Kalman filter assimilation of simulated HIWRAP Doppler velocity data in a hurricane. Mon. Wea. Rev., 141, 26832704, doi:10.1175/MWR-D-12-00157.1.

    • Search Google Scholar
    • Export Citation
  • Sippel, J. A., F. Zhang, Y. Weng, L. Tian, G. M. Heymsfield, and S. A. Braun, 2014: Ensemble Kalman filter assimilation of HIWRAP observations of Hurricane Karl (2010) from the unmanned Global Hawk aircraft. Mon. Wea. Rev., 142, 45594580, doi:10.1175/MWR-D-14-00042.1.

    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., T. J. Matejka, and T. J. Lorello, 1986: Doppler radar study of the trailing anvil region associated with a squall line. J. Atmos. Sci., 43, 356377, doi:10.1175/1520-0469(1986)043<0356:DRSOTT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and Y. Zhang, 2008: Analysis and prediction of a squall line observed during IHOP using multiple WSR-88D observations. Mon. Wea. Rev., 136, 23642388, doi:10.1175/2007MWR2205.1.

    • Search Google Scholar
    • Export Citation
  • Testud, J., P. H. Hildebrand, and W.-C. Lee, 1995: A procedure to correct airborne Doppler radar data for navigation errors using the echo returned from the earth’s surface. J. Atmos. Oceanic Technol., 12, 800820, doi:10.1175/1520-0426(1995)012<0800:APTCAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1230 286 18
PDF Downloads 960 239 17