Subregion-Scale Hindcasting of Contrail Outbreaks, Utilizing Their Synoptic Climatology

Andrew M. Carleton Department of Geography, and Earth and Environmental Systems Institute, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Andrew M. Carleton in
Current site
Google Scholar
PubMed
Close
,
Armand D. Silva Department of Geography, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Armand D. Silva in
Current site
Google Scholar
PubMed
Close
,
Jase Bernhardt Department of Geography, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Jase Bernhardt in
Current site
Google Scholar
PubMed
Close
,
Justin VanderBerg Department of Geography, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Justin VanderBerg in
Current site
Google Scholar
PubMed
Close
, and
David J. Travis Department of Geography and Geology, University of Wisconsin–Whitewater, Whitewater, Wisconsin

Search for other papers by David J. Travis in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Contrail statistical prediction methods are often location specific. To take advantage of the fact that the upper-tropospheric (UT) meteorological conditions that favor “clear-sky outbreaks” of persisting contrails, or contrail favored areas (CFAs), tend to be synoptic in scale, a visual UT-map technique to hindcast CFAs has been developed and tested for subregions of the contiguous United States (CONUS) that have high outbreak frequencies in midseason months (January, April, July, and October) of 2000–02. The method compares daily maps with the composite fields for outbreak days (CON) versus nonoutbreak days (NON), and those assessments are evaluated using standard skill measures. Binary logistic regression determines which UT variables are significant predictors, individually and in combination. The reproducibility of the outbreak hindcast results is tested on the same subregions for the corresponding months of 2008–09. The results confirm the importance of UT relative humidity and vertical-motion (omega) map patterns in regional clear-sky outbreaks. Although the hindcast skill is modest, sensitivity tests suggest that the method will be substantially improved when a longer-term climatological dataset of outbreaks becomes available (to increase sample sizes) and with explicit consideration of the synoptic types on CON days. The latter is demonstrated specifically for the southern CONUS in January, where to improve hindcast success one should also consider the vertical wind shear in the upper troposphere, given the importance of the subtropical jet stream in contrail outbreaks there. Further development of the method to improve its skill ultimately should permit its use in combination with existing objective (statistical and physical models) methods of contrail prediction.

In memory of Professor Peter J. (Pete) Lamb (1947–2014), Cooperative Institute for Mesoscale Meteorological Studies, and College of Atmospheric and Geographic Sciences, University of Oklahoma, Norman, Oklahoma.

Corresponding author address: Andrew M. Carleton, Dept. of Geography, The Pennsylvania State University, University Park, PA 16802. E-mail: amc7@psu.edu

Abstract

Contrail statistical prediction methods are often location specific. To take advantage of the fact that the upper-tropospheric (UT) meteorological conditions that favor “clear-sky outbreaks” of persisting contrails, or contrail favored areas (CFAs), tend to be synoptic in scale, a visual UT-map technique to hindcast CFAs has been developed and tested for subregions of the contiguous United States (CONUS) that have high outbreak frequencies in midseason months (January, April, July, and October) of 2000–02. The method compares daily maps with the composite fields for outbreak days (CON) versus nonoutbreak days (NON), and those assessments are evaluated using standard skill measures. Binary logistic regression determines which UT variables are significant predictors, individually and in combination. The reproducibility of the outbreak hindcast results is tested on the same subregions for the corresponding months of 2008–09. The results confirm the importance of UT relative humidity and vertical-motion (omega) map patterns in regional clear-sky outbreaks. Although the hindcast skill is modest, sensitivity tests suggest that the method will be substantially improved when a longer-term climatological dataset of outbreaks becomes available (to increase sample sizes) and with explicit consideration of the synoptic types on CON days. The latter is demonstrated specifically for the southern CONUS in January, where to improve hindcast success one should also consider the vertical wind shear in the upper troposphere, given the importance of the subtropical jet stream in contrail outbreaks there. Further development of the method to improve its skill ultimately should permit its use in combination with existing objective (statistical and physical models) methods of contrail prediction.

In memory of Professor Peter J. (Pete) Lamb (1947–2014), Cooperative Institute for Mesoscale Meteorological Studies, and College of Atmospheric and Geographic Sciences, University of Oklahoma, Norman, Oklahoma.

Corresponding author address: Andrew M. Carleton, Dept. of Geography, The Pennsylvania State University, University Park, PA 16802. E-mail: amc7@psu.edu
Save
  • Appleman, H., 1953: The formation of exhaust condensation trails by jet aircraft. Bull. Amer. Meteor. Soc., 34, 1420.

  • Atlas, D., and Z. Wang, 2010: Contrails of small and very large optical depth. J. Atmos. Sci., 67, 30653073, doi:10.1175/2010JAS3403.1.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., Z. Wang, and D. P. Duda, 2006: Contrails to cirrus—Morphology, microphysics, and radiative properties. J. Appl. Meteor. Climatol., 45, 519, doi:10.1175/JAM2325.1.

    • Search Google Scholar
    • Export Citation
  • Bakan, S., M. Betancor, V. Gayler, and H. Grassl, 1994: Contrail frequency over Europe from NOAA-satellite images. Ann. Geophys., 12, 962968, doi:10.1007/s00585-994-0962-y.

    • Search Google Scholar
    • Export Citation
  • Bernhardt, J., and A. M. Carleton, 2015: The impacts of long-lived jet contrail ‘outbreaks’ on surface station diurnal temperature range. Int. J. Climatol., doi:10.1002/joc.4303, in press.

    • Search Google Scholar
    • Export Citation
  • Bjornson, B. M., 1992: SAC contrail formation study. U.S. Air Force Environmental Technical Applications Center Rep. USAFETAC/PR-92/003, 40 pp. [Available from USAF Environmental Technical Applications Center, Scott AFB, IL 62225.]

  • Boucher, O., 1999: Air traffic may increase cirrus cloudiness. Nature, 397, 3031, doi:10.1038/16169.

  • Brasseur, G. P., and Coauthors, 1998: European scientific assessment of the atmospheric effects of aircraft emissions. Atmos. Environ., 32, 23292418, doi:10.1016/S1352-2310(97)00486-X.

    • Search Google Scholar
    • Export Citation
  • Burkhardt, U., and B. Kärcher, 2009: Process-based simulation of contrail cirrus in a global climate model. J. Geophys. Res., 114, D16201, doi:10.1029/2008JD011491.

    • Search Google Scholar
    • Export Citation
  • Burkhardt, U., and B. Kärcher, 2011: Global radiative forcing from contrail cirrus. Nat. Climate Change, 1, 5458, doi:10.1038/nclimate1068.

    • Search Google Scholar
    • Export Citation
  • Burkhardt, U., B. Kärcher, M. Ponater, K. Gierens, and A. Gettelman, 2008: Contrail cirrus supporting areas in model and observations. Geophys. Res. Lett., 35, L16808, doi:10.1029/2008GL034056.

    • Search Google Scholar
    • Export Citation
  • Burkhardt, U., B. Kärcher, and U. Schumann, 2010: Global modeling of the contrail and contrail cirrus climate impact. Bull. Amer. Meteor. Soc., 91, 479483, doi:10.1175/2009BAMS2656.1.

    • Search Google Scholar
    • Export Citation
  • Busen, R., and U. Schumann, 1995: Visible contrail formation from fuels with different sulfur contents. Geophys. Res. Lett., 22, 13571360, doi:10.1029/95GL01312.

    • Search Google Scholar
    • Export Citation
  • Carleton, A. M., and P. J. Lamb, 1986: Jet contrails and cirrus cloud: A feasibility study employing high-resolution satellite imagery. Bull. Amer. Meteor. Soc., 67, 301309, doi:10.1175/1520-0477(1986)067<0301:JCACCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carleton, A. M., and D. J. Travis, 2013: Aviation-contrail impacts on climate and climate change: A ready-to-wear research mantle for geographers. Prof. Geogr., 65, 421432, doi:10.1080/00330124.2012.697795.

    • Search Google Scholar
    • Export Citation
  • Carleton, A. M., D. J. Travis, K. Master, and S. Vezhapparambu, 2008: Composite atmospheric environments of jet contrail outbreaks for the United States. J. Appl. Meteor. Climatol., 47, 641667, doi:10.1175/2007JAMC1481.1.

    • Search Google Scholar
    • Export Citation
  • Carleton, A. M., A. D. Silva, M. S. Aghazarian, J. Bernhardt, D. J. Travis, and J. Allard, 2013: Mid-season climate diagnostics of jet contrail ‘outbreaks’ and implications for eastern U.S. sky-cover trends. Climate Res., 56, 209230, doi:10.3354/cr01148.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 1981: Midwestern cloud, sunshine and temperature trends since 1901: Possible evidence of jet contrail effects. J. Appl. Meteor., 20, 496508, doi:10.1175/1520-0450(1981)020<0496:MCSATT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dai, A., K. E. Trenberth, and T. R. Karl, 1999: Effects of clouds, soil moisture, precipitation, and water vapor on diurnal temperature range. J. Climate, 12, 24512473, doi:10.1175/1520-0442(1999)012<2451:EOCSMP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and A. M. Da Silva, 2003: The choice of variable for atmospheric moisture analysis. Mon. Wea. Rev., 131, 155171, doi:10.1175/1520-0493(2003)131<0155:TCOVFA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • DeGrand, J. Q., A. M. Carleton, D. J. Travis, and P. J. Lamb, 2000: A satellite-based climatic description of jet aircraft contrails and associations with atmospheric conditions, 1977–79. J. Appl. Meteor., 39, 14341459, doi:10.1175/1520-0450(2000)039<1434:ASBCDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Detwiler, A., and R. Pratt, 1984: Clear-air seeding: Opportunities and strategies. J. Wea. Modif., 16, 4660.

  • Duda, D. P., and P. Minnis, 2009a: Basic diagnosis and prediction of persistent contrail occurrence using high-resolution numerical weather analyses/forecasts and logistic regression. Part I: Effects of random error. J. Appl. Meteor. Climatol., 48, 17801789, doi:10.1175/2009JAMC2056.1.

    • Search Google Scholar
    • Export Citation
  • Duda, D. P., and P. Minnis, 2009b: Basic diagnosis and prediction of persistent contrail occurrence using high-resolution numerical weather analyses/forecasts and logistic regression. Part II: Evaluation of sample models. J. Appl. Meteor. Climatol., 48, 17901802, doi:10.1175/2009JAMC2057.1.

    • Search Google Scholar
    • Export Citation
  • Duda, D. P., P. Minnis, and L. Nguyen, 2001: Estimates of cloud radiative forcing in contrail clusters using GOES imagery. J. Geophys. Res., 106, 49274937, doi:10.1029/2000JD900393.

    • Search Google Scholar
    • Export Citation
  • Duda, D. P., P. Minnis, L. Nguyen, and R. Palikonda, 2004: A case study of the development of contrail clusters over the Great Lakes. J. Atmos. Sci., 61, 11321146, doi:10.1175/1520-0469(2004)061<1132:ACSOTD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Duda, D. P., P. Minnis, and R. Palikonda, 2005: Estimated contrail frequency and coverage over the contiguous United States from numerical weather prediction analyses and flight track data. Meteor. Z., 14, 537548, doi:10.1127/0941-2948/2005/0050.

    • Search Google Scholar
    • Export Citation
  • Duda, D. P., P. Minnis, K. Khlopenkov, T. L. Chee, and R. Boeke, 2013: Estimation of 2006 Northern Hemisphere contrail coverage using MODIS data. Geophys. Res. Lett., 40, 612617, doi:10.1002/grl.50097.

    • Search Google Scholar
    • Export Citation
  • Elliott, W. P., and D. J. Gaffen, 1991: On the utility of radiosonde humidity archives for climate studies. Bull. Amer. Meteor. Soc., 72, 15071520, doi:10.1175/1520-0477(1991)072<1507:OTUORH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fichter, C., S. Marquart, R. Sausen, and D. S. Lee, 2005: The impact of cruise altitude on contrails and related radiative forcing. Meteor. Z., 14, 563572, doi:10.1127/0941-2948/2005/0048.

    • Search Google Scholar
    • Export Citation
  • Garand, L., C. Grassotti, J. Halle, and G. L. Klein, 1992: On differences in radiosonde humidity-reporting practices and their implications for numerical weather prediction and remote sensing. Bull. Amer. Meteor. Soc., 73, 14171423, doi:10.1175/1520-0477(1992)073<1417:ODIRHR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Garson, D. G., 2014: Logistic Regression: Binary & Multinomial. Statistical Associates Publishers, 224 pp. [Available online at http://www.statisticalassociates.com/logistic.htm.]

  • Gettelman, A., and C. Chen, 2013: The climate impact of aviation aerosols. Geophys. Res. Lett., 40, 27852789, doi:10.1002/grl.50520.

  • Gierens, K., U. Schumann, M. Helten, H. Smit, and P.-H. Wang, 2000: Ice-supersaturated regions and subvisual cirrus in the northern midlatitude upper troposphere. J. Geophys. Res., 105, 22 74322 753, doi:10.1029/2000JD900341.

    • Search Google Scholar
    • Export Citation
  • Gothe, M. B., and H. Grassl, 1993: Satellite remote sensing of the optical depth and mean crystal size of thin cirrus and contrails. Theor. Appl. Climatol., 48, 101113, doi:10.1007/BF00864917.

    • Search Google Scholar
    • Export Citation
  • Graf, K., U. Schumann, H. Mannstein, and B. Mayer, 2012: Aviation induced diurnal North Atlantic cirrus cover cycle. Geophys. Res. Lett., 39, L16804, doi:10.1029/2012GL052590.

    • Search Google Scholar
    • Export Citation
  • Grassl, H., 1990: Possible climatic effects of contrails and additional water vapour. Air Traffic and the Environment—Background, Tendencies and Potential Global Atmospheric Effects, U. Schumann, Ed., Springer-Verlag, 124–137.

  • Hanson, H. M., and D. M. Hanson, 1995: A reexamination of the formation of exhaust condensation trails by jet aircraft. J. Appl. Meteor., 34, 24002405, doi:10.1175/1520-0450(1995)034<2400:AROTFO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hanson, H. M., and D. M. Hanson, 1998: The application of the revised algorithm for the prediction of the formation of exhaust condensation trails by jet aircraft. J. Appl. Meteor., 37, 436440, doi:10.1175/1520-0450(1998)037<0436:TAOTRA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Haywood, J. M., and Coauthors, 2009: A case study of the radiative forcing of persistent contrails evolving into contrail-induced cirrus. J. Geophys. Res., 114, D24201, doi:10.1029/2009JD012650.

    • Search Google Scholar
    • Export Citation
  • Immler, F., R. Treffeisen, D. Engelbart, K. Krüger, and O. Schrems, 2008: Cirrus, contrails, and ice supersaturated regions in high pressure systems at northern mid latitudes. Atmos. Chem. Phys., 8, 16891699, doi:10.5194/acp-8-1689-2008.

    • Search Google Scholar
    • Export Citation
  • Irvine, E. A., B. J. Hoskins, and K. P. Shine, 2012: The dependence of contrail formation on the weather pattern and altitude in the North Atlantic. Geophys. Res. Lett., 39, L12802, doi:10.1029/2012GL051909.

    • Search Google Scholar
    • Export Citation
  • Irvine, E. A., B. J. Hoskins, and K. P. Shine, 2014a: A Lagrangian analysis of ice-supersaturated air over the North Atlantic. J. Geophys. Res. Atmos., 119, 90100, doi:10.1002/2013JD020251.

    • Search Google Scholar
    • Export Citation
  • Irvine, E. A., B. J. Hoskins, and K. P. Shine, 2014b: A simple framework for assessing the trade-off between the climate impact of aviation carbon dioxide emissions and contrails for a single flight. Environ. Res. Lett., 9, doi:10.1088/1748-9326/9/6/064021.

    • Search Google Scholar
    • Export Citation
  • Iwabuchi, H., P. Yang, K. N. Liou, and P. Minnis, 2012: Physical and optical properties of persistent contrails: Climatology and interpretation. J. Geophys. Res., 117, D06215, doi:10.1029/2011JD017020.

    • Search Google Scholar
    • Export Citation
  • Jackson, A., B. Newton, D. Hahn, and A. Bussey, 2001: Statistical contrail forecasting. J. Appl. Meteor., 40, 269279, doi:10.1175/1520-0450(2001)040<0269:SCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jensen, E. J., A. S. Ackerman, D. E. Stevens, O. B. Toon, and P. Minnis, 1998: Spreading and growth of contrails in a sheared environment. J. Geophys. Res., 103, 31 55731 567, doi:10.1029/98JD02594.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kästner, M., R. Meyer, and P. Wendling, 1999: Influence of weather conditions on the distribution of persistent contrails. Meteor. Appl., 6, 261271, doi:10.1017/S1350482799001231.

    • Search Google Scholar
    • Export Citation
  • Kistler, R., and Coauthors, 2001: The NCEP/NCAR 50-Year Reanalysis: Monthly means CD-ROM and documentation. Bull. Amer. Meteor. Soc., 82, 247267, doi:10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kristensson, A., J.-F. Gayet, J. Strom, and F. Auriol, 2000: In situ observations of a reduction in effective crystal diameter in cirrus clouds near flight corridors. Geophys. Res. Lett., 27, 681684, doi:10.1029/1999GL010934.

    • Search Google Scholar
    • Export Citation
  • Kuhn, P. M., 1970: Airborne observations of contrail effects on the thermal radiation budget. J. Atmos. Sci., 27, 937942, doi:10.1175/1520-0469(1970)027<0937:AOOCEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., R. D. Sharman, S. B. Trier, R. G. Fovell, and J. K. Williams, 2012: Recent advances in the understanding of near-cloud turbulence. Bull. Amer. Meteor. Soc., 93, 499515, doi:10.1175/BAMS-D-11-00062.1.

    • Search Google Scholar
    • Export Citation
  • Lee, D. S., D. W. Fahey, P. M. Forster, P. J. Newton, R. C. N. Wit, L. L. Lim, B. Owen, and R. Sausen, 2009: Aviation and global climate change in the 21st century. Atmos. Environ., 43, 35203537, doi:10.1016/j.atmosenv.2009.04.024.

    • Search Google Scholar
    • Export Citation
  • Lee, J. E., and S. D. Johnson, 1985: Expectancy of cloudless photographic days in the contiguous United States. Photogramm. Eng. Remote Sens., 51, 18831891.

    • Search Google Scholar
    • Export Citation
  • Liepert, B. G., 1997: Recent changes in solar radiation under cloudy conditions in Germany. Int. J. Climatol., 17, 15811593, doi:10.1002/(SICI)1097-0088(19971130)17:14<1581::AID-JOC214>3.0.CO;2-H.

    • Search Google Scholar
    • Export Citation
  • Liou, K.-N., 1992: Radiation and Cloud Processes in the Atmosphere: Theory, Observation, and Modeling. Oxford University Press, 487 pp.

  • Liou, K.-N., S. C. Ou, and G. Koenig, 1990: An investigation on the climatic effect of contrail cirrus. Air Traffic and the Environment—Background, Tendencies and Potential Global Atmospheric Effects, U. Schumann, Ed., Springer Verlag, 154–169.

  • Liou, K.-N., Y. Takano, Q. Yue, and P. Yang, 2013: On the radiative forcing of contrail cirrus contaminated by black carbon. Geophys. Res. Lett., 40, 778784, doi:10.1002/grl.50110.

    • Search Google Scholar
    • Export Citation
  • Magee, N. B., E. Melaas, P. M. Finocchio, M. Jardel, A. Noonan, and M. J. Iacono, 2014: Blue Hill Observatory sunshine—Assessment of climate signals in the longest continuous meteorological record in North America. Bull. Amer. Meteor. Soc., 95, 17411751, doi:10.1175/BAMS-D-12-00206.1.

    • Search Google Scholar
    • Export Citation
  • Mannstein, H., R. Meyer, and P. Wendling, 1999: Operational detection of contrails from NOAA-AVHRR data. Int. J. Remote Sens., 20, 16411660, doi:10.1080/014311699212650.

    • Search Google Scholar
    • Export Citation
  • Mason, S. J., 2004: On using “climatology” as a reference strategy in the Brier and ranked probability skill scores. Mon. Wea. Rev., 132, 18911895, doi:10.1175/1520-0493(2004)132<1891:OUCAAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meerkötter, R., U. Schumann, D. R. Doelling, P. Minnis, T. Nakajima, and Y. Tsushima, 1999: Radiative forcing by contrails. Ann. Geophys., 17, 10801094, doi:10.1007/s00585-999-1080-7.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Meyer, R., H. Mannstein, R. Meerkötter, U. Shumann, and P. Wendling, 2002: Regional radiative forcing by line-shaped contrails derived from satellite data. J. Geophys. Res., 107, doi:10.1029/2001JD00426.

    • Search Google Scholar
    • Export Citation
  • Mims, F. M., and D. J. Travis, 1997: Aircraft contrails reduce solar irradiance. Eos, Trans. Amer. Geophys. Union, 78, 448, doi:10.1029/97EO00281.

    • Search Google Scholar
    • Export Citation
  • Minnis, P. J., D. F. Young, D. P. Garber, L. Nguyen, W. L. Smith Jr., and R. Palikonda, 1998: Transformation of contrails into cirrus during SUCCESS. Geophys. Res. Lett., 25, 11571160, doi:10.1029/97GL03314.

    • Search Google Scholar
    • Export Citation
  • Minnis, P. J., U. Schumann, D. R. Doelling, K. M. Gierens, and D. W. Fahey, 1999: Global distribution of contrail radiative forcing. Geophys. Res. Lett., 26, 18531856, doi:10.1029/1999GL900358.

    • Search Google Scholar
    • Export Citation
  • Minnis, P. J., J. K. Ayers, M. L. Nordeen, and S. P. Weaver, 2003: Contrail frequency over the United States from surface observations. J. Climate, 16, 34473462, doi:10.1175/1520-0442(2003)016<3447:CFOTUS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Minnis, P. J., J. K. Ayers, M. L. Nordeen, R. Palikonda, and D. Phan, 2004: Contrails, cirrus trends, and climate. J. Climate, 17, 16711685, doi:10.1175/1520-0442(2004)017<1671:CCTAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Minnis, P. J., R. Palikonda, B. J. Walter, J. K. Ayers, and H. Mannstein, 2005: Contrail properties over the eastern North Pacific from AVHRR data. Meteor. Z., 14, 515523, doi:10.1127/0941-2948/2005/0056.

    • Search Google Scholar
    • Export Citation
  • Minnis, P. J., and Coauthors, 2013: Linear contrail and contrail cirrus properties determined from satellite data. Geophys. Res. Lett., 40, 32203226, doi:10.1002/grl.50569.

    • Search Google Scholar
    • Export Citation
  • Moss, S. J., 1999: The testing and verification of contrail forecasts using pilot observations from aircraft. Meteor. Appl., 6, 193200, doi:10.1017/S1350482799001115.

    • Search Google Scholar
    • Export Citation
  • Muri, H., J. E. Kristjánsson, T. Storelvmo, and M. A. Pfeffer, 2014: The climatic effects of modifying cirrus clouds in a climate engineering framework. J. Geophys. Res., 119, 41744191, doi:10.1002/2013JD021063.

    • Search Google Scholar
    • Export Citation
  • Myhre, G., and F. Stordal, 2001: On the tradeoff of the solar and thermal infrared radiative impact of contrails. Geophys. Res. Lett., 28, 31193122, doi:10.1029/2001GL013193.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, S., J. Curtis, and G. Wendler, 2001: The influence of increased jet airline traffic on the amount of high level cloudiness in Alaska. Theor. Appl. Climatol., 68, 197205, doi:10.1007/s007040170045.

    • Search Google Scholar
    • Export Citation
  • Neter, J., W. Wasserman, and M. H. Kutner, 1985: Applied Linear Statistical Models: Regression, Analysis of Variance, and Experimental Designs. 2nd ed. Richard D. Irwin, 1127 pp.

  • Newinger, C., and U. Burkhardt, 2012: Sensitivity of contrail cirrus radiative forcing to air traffic scheduling. J. Geophys. Res., 117, D10205, doi:10.1029/2011JD016736.

    • Search Google Scholar
    • Export Citation
  • Newton, B., A. Jackson, D. Hahn, and A. Bussey, 1997: Statistical contrail forecasting. Preprints, Seventh Conf. on Aviation, Range, and Aerospace Meteorology, Long Beach, CA, Amer. Meteor. Soc., 463468.

  • Nicodemus, M. L., and J. D. McQuigg, 1969: A simulation model for studying possible modification of surface temperature. J. Appl. Meteor., 8, 199204, doi:10.1175/1520-0450(1969)008<0199:ASMFSP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ovarlez, J., P. Van Velthoven, G. Sachse, S. Vay, H. Schlager, and H. Ovarlez, 2000: Comparison of water vapor measurements from POLINAT 2 with ECMWF analyses in high-humidity conditions. J. Geophys. Res., 105, 37373744, doi:10.1029/1999JD900954.

    • Search Google Scholar
    • Export Citation
  • Palikonda, R., P. Minnis, P. K. Costulis, and D. P. Duda, 2002: Contrail climatology over the USA from MODIS and AVHRR data. Preprints, 10th Conf. on Aviation, Range, and Aerospace Meteorology, Portland, OR, Amer. Meteor. Soc., J1.3.

  • Palikonda, R., P. Minnis, D. P. Duda, and H. Mannstein, 2005: Contrail coverage derived from 2001 AVHRR data over the continental United States of America and surrounding areas. Meteor. Z., 14, 525536, doi:10.1127/0941-2948/2005/0051.

    • Search Google Scholar
    • Export Citation
  • Peters, J. L., 1993: New techniques for contrail forecasting. Air Weather Service Scott Air Force Base Tech. Rep. AWS/TR-93/001, 31 pp. [NTIS AD-A269686.]

  • Petersen, M. S., P. J. Lamb, and K. E. Kunkel, 1995: Implementation of a semiphysical model for examining solar radiation in the Midwest. J. Appl. Meteor., 34, 19051915, doi:10.1175/1520-0450(1995)034<1905:IOASMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Sr., 2003: Heat storage within the Earth system. Bull. Amer. Meteor. Soc., 84, 331335, doi:10.1175/BAMS-84-3-331.

  • Pilié, R. J., and J. E. Jiusto, 1958: A laboratory study of contrails. J. Meteor., 15, 149154, doi:10.1175/1520-0469(1958)015<0149:ALSOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rädel, G., and K. P. Shine, 2008: Radiative forcing by persistent contrails and its dependence on cruise altitudes. J. Geophys. Res., 113, D07105, doi:10.1029/2007JD009117.

    • Search Google Scholar
    • Export Citation
  • Ryan, A. C., A. R. MacKenzie, S. Watkins, and R. Timmis, 2011: World War II contrails: A case study of aviation-induced cloudiness. Int. J. Climatol., 32, 17451753, doi:10.1002/joc.2392.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., 1997: Contrail-cirrus and their potential for regional climate change. Bull. Amer. Meteor. Soc., 78, 18851903, doi:10.1175/1520-0477(1997)078<1885:CCATPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sausen, R., K. Gierens, M. Ponater, and U. Schumann, 1998: A diagnostic study of the global distribution of contrails. Part I: Present day climate. Theor. Appl. Climatol., 61, 127141, doi:10.1007/s007040050058.

    • Search Google Scholar
    • Export Citation
  • Schrader, M. L., 1997: Calculations of aircraft contrail formation critical temperatures. J. Appl. Meteor., 36, 17251728, doi:10.1175/1520-0450(1997)036<1725:COACFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schröder, F., and Coauthors, 2000: On the transition of contrails into cirrus clouds. J. Atmos. Sci., 57, 464480, doi:10.1175/1520-0469(2000)057<0464:OTTOCI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schumann, U., 1996: On conditions for contrail formation from aircraft exhausts. Meteor. Z., 5, 423.

  • Schumann, U., 2000: Influence of propulsion efficiency on contrail formation. Aerosp. Sci. Technol., 4, 391401, doi:10.1016/S1270-9638(00)01062-2.

    • Search Google Scholar
    • Export Citation
  • Schumann, U., 2005: Formation, properties and climatic effects of contrails. C. R. Phys., 6, 549565, doi:10.1016/j.crhy.2005.05.002.

  • Schumann, U., 2012: A contrail cirrus prediction model. Geosci. Model Dev., 5, 543580, doi:10.5194/gmd-5-543-2012.

  • Schumann, U., and P. Wendling, 1990: Determination of contrails from satellite data and observational results. Air Traffic and the Environment—Background, Tendencies and Potential Global Atmospheric Effects, U. Schumann, Ed., Springer-Verlag, 138–153.

  • Schumann, U., and K. Graf, 2013: Aviation-induced cirrus and radiation changes at diurnal timescales. J. Geophys. Res. Atmos., 118, 24042421, doi:10.1002/jgrd.50184.

    • Search Google Scholar
    • Export Citation
  • Schumann, U., J. Ström, R. Busen, R. Bauman, K. Gierens, M. Krautstrunk, F. P. Schröder, and J. Sting, 1996: In situ observations of particles in jet aircraft exhausts and contrails for different sulfur-containing fuels. J. Geophys. Res., 101, 68536869, doi:10.1029/95JD03405.

    • Search Google Scholar
    • Export Citation
  • Schumann, U., B. Mayer, K. Graf, and H. Mannstein, 2012: A parametric radiative forcing model for contrail cirrus. J. Appl. Meteor. Climatol., 51, 13911406, doi:10.1175/JAMC-D-11-0242.1.

    • Search Google Scholar
    • Export Citation
  • Scorer, R. S., and L. J. Davenport, 1970: Contrails and aircraft downwash. J. Fluid Mech., 43, 451464, doi:10.1017/S0022112070002501.

    • Search Google Scholar
    • Export Citation
  • Sheth, K., T. Amis, S. Gutierrez-Nolasco, B. Sridhar, and D. Mulfinger, 2013: Development of a probabilistic convective weather forecast threshold parameter for flight-routing decisions. Wea. Forecasting, 28, 11751187, doi:10.1175/WAF-D-12-00052.1.

    • Search Google Scholar
    • Export Citation
  • Silva, A. D., 2009: A composite retro-prediction method for jet contrail outbreaks over the United States. M.S. thesis, Dept. of Geography, The Pennsylvania State University, 159 pp. [Available from Dept. of Geography, The Pennsylvania State University, University Park, PA 16802.]