Variational Assimilation of Cloud Liquid/Ice Water Path and Its Impact on NWP

Yaodeng Chen * Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Yaodeng Chen in
Current site
Google Scholar
PubMed
Close
,
Hongli Wang Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado
Global Systems Division, NOAA/Earth System Research Laboratory, Boulder, Colorado

Search for other papers by Hongli Wang in
Current site
Google Scholar
PubMed
Close
,
Jinzhong Min * Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Jinzhong Min in
Current site
Google Scholar
PubMed
Close
,
Xiang-Yu Huang Centre for Climate Research Singapore, Meteorological Service Singapore, Singapore

Search for other papers by Xiang-Yu Huang in
Current site
Google Scholar
PubMed
Close
,
Patrick Minnis NASA Langley Research Center, Hampton, Virginia

Search for other papers by Patrick Minnis in
Current site
Google Scholar
PubMed
Close
,
Ruizhi Zhang * Key Laboratory of Meteorological Disaster of Ministry of Education, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Ruizhi Zhang in
Current site
Google Scholar
PubMed
Close
,
Julie Haggerty ** National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Julie Haggerty in
Current site
Google Scholar
PubMed
Close
, and
Rabindra Palikonda Science Systems and Applications, Inc., Hampton, Virginia

Search for other papers by Rabindra Palikonda in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Analysis of the cloud components in numerical weather prediction models using advanced data assimilation techniques has been a prime topic in recent years. In this research, the variational data assimilation (DA) system for the Weather Research and Forecasting (WRF) Model (WRFDA) is further developed to assimilate satellite cloud products that will produce the cloud liquid water and ice water analysis. Observation operators for the cloud liquid water path and cloud ice water path are developed and incorporated into the WRFDA system. The updated system is tested by assimilating cloud liquid water path and cloud ice water path observations from Global Geostationary Gridded Cloud Products at NASA. To assess the impact of cloud liquid/ice water path data assimilation on short-term regional numerical weather prediction (NWP), 3-hourly cycling data assimilation and forecast experiments with and without the use of the cloud liquid/ice water paths are conducted. It is shown that assimilating cloud liquid/ice water paths increases the accuracy of temperature, humidity, and wind analyses at model levels between 300 and 150 hPa after 5 cycles (15 h). It is also shown that assimilating cloud liquid/ice water paths significantly reduces forecast errors in temperature and wind at model levels between 300 and 150 hPa. The precipitation forecast skills are improved as well. One reason that leads to the improved analysis and forecast is that the 3-hourly rapid update cycle carries over the impact of cloud information from the previous cycles spun up by the WRF Model.

Denotes Open Access content.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Hongli Wang, Global Systems Division, NOAA/Earth System Research Laboratory, 325 Broadway, Boulder, CO 80305. E-mail: hongli.wang@noaa.gov

Abstract

Analysis of the cloud components in numerical weather prediction models using advanced data assimilation techniques has been a prime topic in recent years. In this research, the variational data assimilation (DA) system for the Weather Research and Forecasting (WRF) Model (WRFDA) is further developed to assimilate satellite cloud products that will produce the cloud liquid water and ice water analysis. Observation operators for the cloud liquid water path and cloud ice water path are developed and incorporated into the WRFDA system. The updated system is tested by assimilating cloud liquid water path and cloud ice water path observations from Global Geostationary Gridded Cloud Products at NASA. To assess the impact of cloud liquid/ice water path data assimilation on short-term regional numerical weather prediction (NWP), 3-hourly cycling data assimilation and forecast experiments with and without the use of the cloud liquid/ice water paths are conducted. It is shown that assimilating cloud liquid/ice water paths increases the accuracy of temperature, humidity, and wind analyses at model levels between 300 and 150 hPa after 5 cycles (15 h). It is also shown that assimilating cloud liquid/ice water paths significantly reduces forecast errors in temperature and wind at model levels between 300 and 150 hPa. The precipitation forecast skills are improved as well. One reason that leads to the improved analysis and forecast is that the 3-hourly rapid update cycle carries over the impact of cloud information from the previous cycles spun up by the WRF Model.

Denotes Open Access content.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Dr. Hongli Wang, Global Systems Division, NOAA/Earth System Research Laboratory, 325 Broadway, Boulder, CO 80305. E-mail: hongli.wang@noaa.gov
Save
  • Albers, S. C., J. A. McGinley, D. L. Birkenheuer, and J. R. Smart, 1996: The Local Analysis and Prediction System (LAPS): Analyses of clouds, precipitation, and temperature. Wea. Forecasting, 11, 273287, doi:10.1175/1520-0434(1996)011<0273:TLAAPS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Auligné, T., and H. Wang, 2012: Assimilation of cloud-affected infrared satellite radiances. Abstract, 13th WRF Users’ Workshop, Boulder, CO, UCAR, P13. [Available online at http://www2.mmm.ucar.edu/wrf/users/workshops/WS2012/abstracts/p13.htm.]

    • Search Google Scholar
    • Export Citation
  • Auligné, T., A. Lorenc, Y. Michel, T. Montmerle, A. Jones, M. Hu, and J. Dudhia, 2011: Toward a new cloud analysis and prediction system. Bull. Amer. Meteor. Soc., 92, 207210, doi:10.1175/2010BAMS2978.1.

    • Search Google Scholar
    • Export Citation
  • Barker, D., and Coauthors, 2012: The Weather Research and Forecasting Model’s Community Variational/Ensemble Data Assimilation System: WRFDA. Bull. Amer. Meteor. Soc., 93, 831843, doi:10.1175/BAMS-D-11-00167.1.

    • Search Google Scholar
    • Export Citation
  • Bauer, P., and Coauthors, 2011: Satellite cloud and precipitation assimilation at operational NWP centres. Quart. J. Roy. Meteor. Soc., 137, 19341951, doi:10.1002/qj.905.

    • Search Google Scholar
    • Export Citation
  • Benedetti, A., and M. Janisková, 2008: Assimilation of MODIS cloud optical depths in the ECMWF model. Mon. Wea. Rev., 136, 17271746, doi:10.1175/2007MWR2240.1.

    • Search Google Scholar
    • Export Citation
  • Benjamin, S. G., and Coauthors, 2004: An hourly assimilation-forecast cycle: The RUC. Mon. Wea. Rev., 132, 495518, doi:10.1175/1520-0493(2004)132<0495:AHACTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Derber, J. C., and W.-S. Wu, 1998: The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Mon. Wea. Rev., 126, 22872299, doi:10.1175/1520-0493(1998)126<2287:TUOTCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Desroziers, G., L. Berre, B. Chapnik, and P. Poli, 2005: Diagnosis of observation, background and analysis-error statistics in observation space. Quart. J. Roy. Meteor. Soc., 131, 33853396, doi:10.1256/qj.05.108.

    • Search Google Scholar
    • Export Citation
  • Dong, X., P. Minnis, G. G. Mace, W. L. Smith Jr., M. Poellot, R. T. Marchand, and A. D. Rapp, 2002: Comparison of stratus cloud properties deduced from surface, GOES, and aircraft data during the March 2000 ARM Cloud IOP. J. Atmos. Sci., 59, 32653284, doi:10.1175/1520-0469(2002)059<3265:COSCPD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., P. Bauer, and J.-F. Mahfouf, 2007: Issues regarding the assimilation of cloud and precipitation data. J. Atmos. Sci., 64, 37853798, doi:10.1175/2006JAS2044.1.

    • Search Google Scholar
    • Export Citation
  • Gao, J., and D. J. Stensrud, 2012: Assimilation of reflectivity data in a convective-scale, cycled 3DVAR framework with hydrometeor classification. J. Atmos. Sci., 69, 10541065, doi:10.1175/JAS-D-11-0162.1.

    • Search Google Scholar
    • Export Citation
  • Hu, M., M. Xue, and K. Brewster, 2006a: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part I: Cloud analysis and its impact. Mon. Wea. Rev., 134, 675698, doi:10.1175/MWR3092.1.

    • Search Google Scholar
    • Export Citation
  • Hu, M., M. Xue, J. Gao, and K. Brewster, 2006b: 3DVAR and cloud analysis with WSR-88D level-II data for the prediction of the Fort Worth, Texas, tornadic thunderstorms. Part II: Impact of radial velocity analysis via 3DVAR. Mon. Wea. Rev., 134, 699721, doi:10.1175/MWR3093.1.

    • Search Google Scholar
    • Export Citation
  • Jones, T. A., and D. J. Stensrud, 2015: Assimilating cloud water path as a function of model cloud microphysics in an idealized simulation. Mon. Wea. Rev., 143, 20522081, doi:10.1175/MWR-D-14-00266.1.

    • Search Google Scholar
    • Export Citation
  • Jones, T. A., D. J. Stensrud, P. Minnis, and R. Palikonda, 2013: Evaluation of a forward operator to assimilate cloud water path into WRF-DART. Mon. Wea. Rev., 141, 22722289, doi:10.1175/MWR-D-12-00238.1.

    • Search Google Scholar
    • Export Citation
  • Kerr, C. A., D. J. Stensrud, and X. Wang, 2015: Assimilation of cloud top temperature and radar observations of an idealized splitting supercell using an Observing System Simulation Experiment. Mon. Wea. Rev., 143, 10181034, doi:10.1175/MWR-D-14-00146.1.

    • Search Google Scholar
    • Export Citation
  • Koch, S. E., A. Aksakal, and J. T. McQueen, 1997: The influence of mesoscale humidity and evapotranspiration fields on a model forecast of a cold-frontal squall line. Mon. Wea. Rev., 125, 384409, doi:10.1175/1520-0493(1997)125<0384:TIOMHA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kostka, P. M., M. Weissmann, R. Buras, B. Mayer, and O. Stiller, 2014: Observation operator for visible and near-infrared satellite reflectances. J. Atmos. Oceanic Technol., 31, 12161233, doi:10.1175/JTECH-D-13-00116.1.

    • Search Google Scholar
    • Export Citation
  • Liu, M., J. W. Yu, G. R. Han, and P.-B. Zhang, 2014: Analysis of circulation feature of a continuous heavy rain in Yangtze-Huaihe basin during mid-July in 2011. J. Trop. Meteor., 30, 153160.

    • Search Google Scholar
    • Export Citation
  • Liu, Z., C. S. Schwartz, C. Snyder, and S. Y. Ha, 2012: Impact of assimilating AMSU-A radiances on forecasts of 2008 Atlantic tropical cyclones initialized with a limited-area ensemble Kalman filter. Mon. Wea. Rev., 140, 40174034, doi:10.1175/MWR-D-12-00083.1.

    • Search Google Scholar
    • Export Citation
  • McNally, A. P., 2009: The direct assimilation of cloud affected satellite infrared radiances in the ECMWF 4D-Var. Quart. J. Roy. Meteor. Soc., 135, 12141229, doi:10.1002/qj.426.

    • Search Google Scholar
    • Export Citation
  • Migliorini, S., 2012: On the equivalence between radiance and retrieval assimilation. Mon. Wea. Rev., 140, 258265, doi:10.1175/MWR-D-10-05047.1.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., 2007: Cloud retrievals from GOES-R. Proc. OSA Hyperspectral Imaging and Sounding of the Environment Topical Meeting, Santa Fe, NM, Optical Society of America, HWC3m, doi:10.1364/HISE.2007.HWC3.

  • Minnis, P., and Coauthors, 2008: Near-real time cloud retrievals from operational and research meteorological satellites. Remote Sensing of Clouds and the Atmosphere XIII, R. H. Picard et al., Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 7107), doi:10.1117/12.800344.

  • Minnis, P., and Coauthors, 2011a: CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part I: Algorithms. IEEE Trans. Geosci. Remote Sens., 49, 43744400, doi:10.1109/TGRS.2011.2144601.

    • Search Google Scholar
    • Export Citation
  • Minnis, P., and Coauthors, 2011b: CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data—Part II: Examples of average results and comparisons with other data. IEEE Trans. Geosci. Remote Sens., 49, 44014430, doi:10.1109/TGRS.2011.2144602.

    • Search Google Scholar
    • Export Citation
  • Okamoto, K., A. P. McNally, and W. Bell, 2014: Progress towards the assimilation of all-sky infrared radiances: An evaluation of cloud effects. Quart. J. Roy. Meteor. Soc., 140, 16031614, doi:10.1002/qj.2242.

    • Search Google Scholar
    • Export Citation
  • Painemal, D., P. Minnis, J. K. Ayers, and L. O’Neill, 2012: GOES-10 microphysical retrievals in marine warm clouds: Multi-instrument validation and daytime cycle over the southeast Pacific. J. Geophys. Res., 117, D19212, doi:10.1029/2012JD017822.

    • Search Google Scholar
    • Export Citation
  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 17471763, doi:10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Parsons, D. B., M. A. Shapiro, and E. Miller, 2000: The mesoscale structure of a nocturnal dryline and of a frontal–dryline merger. Mon. Wea. Rev., 128, 38243838, doi:10.1175/1520-0493(2001)129<3824:TMSOAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pavelin, E., S. English, and J. Eyre, 2008: The assimilation of cloud‐affected infrared satellite radiances for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 134, 737749, doi:10.1002/qj.243.

    • Search Google Scholar
    • Export Citation
  • Pincus, R., R. J. Patrick Hofmann, J. L. Anderson, K. Raeder, N. Collins, and J. S. Whitaker, 2011: Can fully accounting for clouds in data assimilation improve short-term forecasts by global models? Mon. Wea. Rev., 139, 946957, doi:10.1175/2010MWR3412.1.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedl, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473, doi:10.1109/TGRS.2002.808301.

    • Search Google Scholar
    • Export Citation
  • Polkinghorne, R., and T. Vukicevic, 2011: Data assimilation of cloud-affected radiances in a cloud-resolving model. Mon. Wea. Rev., 139, 755773, doi:10.1175/2010MWR3360.1.

    • Search Google Scholar
    • Export Citation
  • Prates, C., S. Migliorini, S. English, and E. Pavelin, 2014: Assimilation of satellite infrared sounding measurements in the presence of heterogeneous cloud fields. Quart. J. Roy Meteor. Soc., 140, 20622077, doi:10.1002/qj.2279.

    • Search Google Scholar
    • Export Citation
  • Raymond, W. H., W. S. Olson, and G. Callan, 1995: Diabatic forcing and initialization with assimilation of cloud water and rainwater in a forecast model. Mon. Wea. Rev., 123, 366382, doi:10.1175/1520-0493(1995)123<0366:DFAIWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shen, Y., P. Zhao, Y. Pan, and J. Yu, 2014: A high spatiotemporal gauge satellite merged precipitation analysis over China. J. Geophys. Res. Atmos., 119, 30633075, doi:10.1002/2013JD020686.

    • Search Google Scholar
    • Export Citation
  • Stengel, M., M. Lindskog, P. Undén, and N. Gustafsson, 2013: The impact of cloud-affected IR radiances on forecast accuracy of a limited-area NWP model. Quart. J. Roy. Meteor. Soc., 139, 20812096, doi:10.1002/qj.2102.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. A. Crook, 1998: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part II: Retrieval experiments of an observed Florida convective storm. J. Atmos. Sci., 55, 835852, doi:10.1175/1520-0469(1998)055<0835:DAMRFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and H. Wang, 2013: Radar data assimilation with WRF 4D-Var: Part II. Comparison with 3D-Var for a squall line over the U.S. Great Plains. Mon. Wea. Rev., 141, 22452264, doi:10.1175/MWR-D-12-00169.1.

    • Search Google Scholar
    • Export Citation
  • Vukicevic, T., T. Greenwald, M. Zupanski, D. Zupanski, T. Vonder Haar, and A. Jones, 2004: Mesoscale cloud state estimation from visible and infrared satellite radiances. Mon. Wea. Rev., 132, 30663077, doi:10.1175/MWR2837.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H., J. Sun, S. Fan, and X.-Y. Huang, 2013a: Indirect assimilation of radar reflectivity with WRF 3D-Var and its impact on prediction of four summertime convective events. J. Appl. Meteor. Climatol., 52, 889902, doi:10.1175/JAMC-D-12-0120.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H., J. Sun, X. Zhang, X.-Y. Huang, and T. Auligné, 2013b: Radar data assimilation with WRF 4D-Var. Part I: System development and preliminary testing. Mon. Wea. Rev., 141, 22242244, doi:10.1175/MWR-D-12-00168.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H., X.-Y. Huang, J. Sun, D. Xu, M. Zhang, S. Fan, and J. Zhong, 2014: Inhomogeneous background error modeling for WRF-Var using the NMC method. J. Appl. Meteor. Climatol., 53, 22872309, doi:10.1175/JAMC-D-13-0281.1.

    • Search Google Scholar
    • Export Citation
  • Wang, X., D. M. Barker, C. Snyder, and T. M. Hamill, 2008: A hybrid ETKF–3DVAR data assimilation scheme for the WRF Model. Part I: Observing system simulation experiment. Mon. Wea. Rev., 136, 51165131, doi:10.1175/2008MWR2444.1.

    • Search Google Scholar
    • Export Citation
  • Weisz, E., J. Li, J. Li, D. K. Zhou, H. L. Huang, M. D. Goldberg, and P. Yang, 2007: Cloudy sounding and cloud top height retrieval from AIRS alone single field of view radiance measurements. Geophys. Res. Lett., 34, L12802, doi:10.1029/2007GL030219.

    • Search Google Scholar
    • Export Citation
  • Xi, B., X. Dong, P. Minnis, and S. Sun-Mack, 2014: Validation of CERES-MODIS Edition 4 marine boundary layer cloud properties using DOE ARM AMF measurements at the Azores. J. Geophys. Res. Atmos.,119, 9509–9529, doi:10.1002/2014JD021813.

  • Xu, D., Z. Liu, X.-Y. Huang, J. Min, and H. Wang, 2013: Impact of assimilating IASI radiance observations on forecasts of two tropical cyclones. Meteor. Atmos. Phys., 122, 118, doi:10.1007/s00703-013-0276-2.

    • Search Google Scholar
    • Export Citation
  • Zhang, M., and D.-L. Zhang, 2012: Subkilometer simulation of a torrential-rain-producing mesoscale convective system in east China. Part I: Model verification and convective organization. Mon. Wea. Rev., 140, 184201, doi:10.1175/MWR-D-11-00029.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., X.-Y. Huang, J. Liu, J. Poterjoy, Y. Weng, F. Zhang, and H. Wang, 2014: Development of an efficient regional four-dimensional variational data assimilation system for WRF. J. Atmos. Oceanic Technol., 31, 27772794, doi:10.1175/JTECH-D-13-00076.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, Q., and Y. Jin, 2008: High-resolution radar data assimilation for Hurricane Isabel (2003) at landfall. Bull. Amer. Meteor. Soc., 89, 13551372, doi:10.1175/2008BAMS2562.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 756 334 21
PDF Downloads 501 180 13