Summertime Response of Temperature and Cooling Energy Demand to Urban Expansion in a Semiarid Environment

F. Salamanca School of Mathematical and Statistical Sciences, Julie Ann Wrigley Global Institute of Sustainability, Arizona State University, Tempe, Arizona

Search for other papers by F. Salamanca in
Current site
Google Scholar
PubMed
Close
,
M. Georgescu School of Mathematical and Statistical Sciences, Julie Ann Wrigley Global Institute of Sustainability, and School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, Arizona

Search for other papers by M. Georgescu in
Current site
Google Scholar
PubMed
Close
,
A. Mahalov School of Mathematical and Statistical Sciences, Julie Ann Wrigley Global Institute of Sustainability, Arizona State University, Tempe, Arizona

Search for other papers by A. Mahalov in
Current site
Google Scholar
PubMed
Close
, and
M. Moustaoui School of Mathematical and Statistical Sciences, Julie Ann Wrigley Global Institute of Sustainability, Arizona State University, Tempe, Arizona

Search for other papers by M. Moustaoui in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This article explores regional impacts on near-surface air temperature and air conditioning (AC) electricity consumption due to projected urban expansion in a semiarid environment. In addition to the modern-day urban landscape setting, two projected urban expansion scenarios are analyzed with the Weather Research and Forecasting Model coupled to a multilayer building energy scheme. The authors simulate a 10-day extreme heat period at high spatial resolution (1-km horizontal grid spacing) over Arizona, one of the fastest-growing regions in the United States. Results show that replacement of natural land surfaces by buildings and pavement increases the local mean near-surface air temperature considerably. Furthermore, present-day waste heat emission from AC systems increases the mean nighttime 2-m air temperature by up to 1°C in some urban locations, but projected urban development aggravates the situation, increasing nighttime air temperatures by up to 1.5°–1.75°C. The contribution of anthropogenic heating due to AC systems is computed through comparison of two different types of numerical experiments: in one case, a specific urban scenario is simulated with the AC systems turned on and expelling heat into the outdoor environment, and in the second case, the same urban development (with the AC systems turned on) is simulated but with no heat expelled into the outdoor environment. The results demonstrate that projected urban expansion significantly amplifies local cooling energy demands for the Phoenix and Tucson metropolitan regions and therefore highlight the need for sustainable future energy needs to maintain thermal comfort levels.

Corresponding author address: Francisco Salamanca, School of Mathematical and Statistical Sciences, Arizona State University, P.O. Box 871804, Tempe, AZ 85287-1804. E-mail: fsalaman@asu.edu

Abstract

This article explores regional impacts on near-surface air temperature and air conditioning (AC) electricity consumption due to projected urban expansion in a semiarid environment. In addition to the modern-day urban landscape setting, two projected urban expansion scenarios are analyzed with the Weather Research and Forecasting Model coupled to a multilayer building energy scheme. The authors simulate a 10-day extreme heat period at high spatial resolution (1-km horizontal grid spacing) over Arizona, one of the fastest-growing regions in the United States. Results show that replacement of natural land surfaces by buildings and pavement increases the local mean near-surface air temperature considerably. Furthermore, present-day waste heat emission from AC systems increases the mean nighttime 2-m air temperature by up to 1°C in some urban locations, but projected urban development aggravates the situation, increasing nighttime air temperatures by up to 1.5°–1.75°C. The contribution of anthropogenic heating due to AC systems is computed through comparison of two different types of numerical experiments: in one case, a specific urban scenario is simulated with the AC systems turned on and expelling heat into the outdoor environment, and in the second case, the same urban development (with the AC systems turned on) is simulated but with no heat expelled into the outdoor environment. The results demonstrate that projected urban expansion significantly amplifies local cooling energy demands for the Phoenix and Tucson metropolitan regions and therefore highlight the need for sustainable future energy needs to maintain thermal comfort levels.

Corresponding author address: Francisco Salamanca, School of Mathematical and Statistical Sciences, Arizona State University, P.O. Box 871804, Tempe, AZ 85287-1804. E-mail: fsalaman@asu.edu
Save
  • Adams, D. K., and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78, 21972213, doi:10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Argueso, D., J. P. Evans, L. Fita, and K. J. Bormann, 2013: Temperature response to future urbanization and climate change. Climate Dyn., 42, 2183–2199, doi:10.1007/s00382-013-1789-6.

    • Search Google Scholar
    • Export Citation
  • Arnfield, A. J., 2003: Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol., 23, 126, doi:10.1002/joc.859.

    • Search Google Scholar
    • Export Citation
  • Basara, J. B., P. K. Hall Jr., A. J. Schroeder, B. G. Illston, and K. L. Nemunaitis, 2008: Diurnal cycle of the Oklahoma City urban heat island. J. Geophys. Res., 113, D20109, doi:10.1029/2008JD010311.

    • Search Google Scholar
    • Export Citation
  • Best, M. J., C. S. B. Grimmond, and M. G. Villani, 2006: Evaluation of the urban tile in MOSES using surface energy balance observations. Bound.-Layer Meteor., 118, 503525, doi:10.1007/s10546-005-9025-5.

    • Search Google Scholar
    • Export Citation
  • Bierwagen, B. G., D. M. Theobald, C. R. Pyke, A. Choate, P. Groth, J. V. Thomas, and P. Morefield, 2010: National housing and impervious surface scenarios for integrated climate impact assessments. Proc. Natl. Acad. Sci. USA, 107, 20 88720 892, doi:10.1073/pnas.1002096107.

    • Search Google Scholar
    • Export Citation
  • Bougeault, P., and P. Lacarrere, 1989: Parameterization of orography-induced turbulence in a mesobeta-scale model. Mon. Wea. Rev., 117, 18721890, doi:10.1175/1520-0493(1989)117<1872:POOITI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brazel, A., N. Selover, R. Vose, and G. Heisler, 2000: The tale of two climates—Baltimore and Phoenix urban LTER sites. Climate Res., 15, 123135, doi:10.3354/cr015123.

    • Search Google Scholar
    • Export Citation
  • Burian, S. J., S. P. Velugubantla, and M. J. Brown, 2002: Morphological analyses using 3D building databases: Phoenix, Arizona. Los Alamos National Laboratory Rep. LA-UR-02-6726, 65 pp.

  • Chen, F., and J. Dudhia, 2001a: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001b: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part II: Preliminary model validation. Mon. Wea. Rev., 129, 587604, doi:10.1175/1520-0493(2001)129<0587:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Clarke, J. A., P. P. Yaneske, and A. A. Pinney, 1991: The harmonization of thermal properties of building materials. BEPAC Tech. Note 91/6, 87 pp.

  • Comrie, A. C., 2000: Mapping a wind-modified urban heat island in Tucson, Arizona (with comments on integrating research and undergraduate learning). Bull. Amer. Meteor. Soc., 81, 24172431, doi:10.1175/1520-0477(2000)081<2417:MAWMUH>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Duffy, P. B., and C. Tebaldi, 2012: Increasing prevalence of extreme summer temperatures in the US. Climatic Change, 111, 487495, doi:10.1007/s10584-012-0396-6.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.

    • Search Google Scholar
    • Export Citation
  • Fernando, H. J. S., 2010: Fluid dynamics of urban atmospheres in complex terrain. Annu. Rev. Fluid Mech., 42, 365389, doi:10.1146/annurev-fluid-121108-145459.

    • Search Google Scholar
    • Export Citation
  • Fry, J., and Coauthors, 2011: Completion of the 2006 National Land Cover Database for the conterminous United States. Photogramm. Eng. Remote Sensing, 77, 858864.

    • Search Google Scholar
    • Export Citation
  • Georgescu, M., A. Mahalov, and M. Moustaoui, 2012: Seasonal hydroclimatic impacts of Sun Corridor expansion. Environ. Res. Lett.,7, 034026, doi:10.1088/1748-9326/7/3/034026.

  • Georgescu, M., M. Moustaoui, A. Mahalov, and J. Dudhia, 2013: Summer-time climate impacts of projected megapolitan expansion in Arizona. Nat. Climate Change, 3, 37–41, doi:10.1038/nclimate1656.

    • Search Google Scholar
    • Export Citation
  • Georgescu, M., P. E. Morefield, B. G. Bierwagen, and C. P. Weaver, 2014: Urban adaptation can roll back warming of emerging megapolitan regions. Proc. Natl. Acad. Sci. USA, 111, 29092914, doi:10.1073/pnas.1322280111.

    • Search Google Scholar
    • Export Citation
  • Grossman-Clarke, S., J. A. Zehnder, T. Loridan, and C. S. B. Grimmond, 2010: Contribution of land use changes to near-surface air temperature during recent summer extreme heat events in the Phoenix metropolitan area. J. Appl. Meteor. Climatol., 49, 16491664, doi:10.1175/2010JAMC2362.1.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Howard, L., 1833: The Climate of London: Deduced from Meteorological Observations Made on the Metropolis and at Various Places around It. Vol. 1, Harvey and Garton, 348 pp.

  • Jacobson, M. Z., 2001: GATOR-GCMM: A global-through urban-scale air pollution and weather forecast model. 1. Model design and treatment of subgrid soil, vegetation, roads, rooftops, water, sea ice, and snow. J. Geophys. Res., 106, 53855401, doi:10.1029/2000JD900560.

    • Search Google Scholar
    • Export Citation
  • Kondo, H., and Y. Kikegawa, 2003: Temperature variation in the urban canopy with anthropogenic energy use. Pure Appl. Geophys., 160, 317324, doi:10.1007/s00024-003-8780-9.

    • Search Google Scholar
    • Export Citation
  • Liao, J., T. Wang, X. Wang, M. Xie, Z. Jiang, X. Huang, and J. Zhu, 2014: Impacts of different urban canopy schemes in WRF/Chem on regional climate and air quality in Yangtze River Delta, China. Atmos. Res., 145–146, 226243, doi:10.1016/j.atmosres.2014.04.005.

    • Search Google Scholar
    • Export Citation
  • Mahalov, A., and M. Moustaoui, 2009: Vertically nested nonhydrostatic model for multiscale resolution of flows in the upper troposphere and lower stratosphere. J. Comput. Phys., 228, 12941311, doi:10.1016/j.jcp.2008.10.030.

    • Search Google Scholar
    • Export Citation
  • Martilli, A., A. Clappier, and M. W. Rotach, 2002: An urban surface exchange parameterization for mesoscale models. Bound.-Layer Meteor., 104, 261304, doi:10.1023/A:1016099921195.

    • Search Google Scholar
    • Export Citation
  • McCarthy, M. P., M. J. Best, and R. A. Betts, 2010: Climate change in cities due to global warming and urban effects. Geophys. Res. Lett., 37, L09705, doi:10.1029/2010GL042845.

    • Search Google Scholar
    • Export Citation
  • Miller, N. L., K. Hayhoe, J. Jin, and M. Auffhammer, 2008: Climate, extreme heat, and electricity demand in California. J. Appl. Meteor. Climatol., 47, 18341844, doi:10.1175/2007JAMC1480.1.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Nakicenovic, N., and R. Swart, 2000: Special Report on Emissions Scenarios. Cambridge University Press, 570 pp.

  • Nichol, J., T. P. Hang, and E. Ng, 2013: Temperature projection in a tropical city using remote sensing and dynamic modeling. Climate Dyn., 42, 2921–2929, doi:10.1007/s00382-013-1748-2.

    • Search Google Scholar
    • Export Citation
  • Ohashi, Y., Y. Genchi, H. Kondo, Y. Kikegawa, H. Yoshikado, and Y. Hirano, 2007: Influence of air-conditioning waste heat on air temperature in Tokyo during summer: Numerical experiments using an urban canopy model coupled with a building energy model. J. Appl. Meteor. Climatol., 46, 6681, doi:10.1175/JAM2441.1.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1988: Boundary Layer Climates. 2nd ed. Routledge, 464 pp.

  • Oleson, K., 2012: Contrast between urban and rural climate in CCSM4 CMIP5 climate change scenarios. J. Climate, 25, 13901412, doi:10.1175/JCLI-D-11-00098.1.

    • Search Google Scholar
    • Export Citation
  • Oleson, K., G. B. Bonan, J. Feddema, M. Vertenstein, and C. S. B. Grimmond, 2008a: An urban parameterization for a global climate model. Part I: Formulation and evaluation for two cities. J. Appl. Meteor. Climatol., 47, 10381060, doi:10.1175/2007JAMC1597.1.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., G. B. Bonan, J. Feddema, and M. Vertenstein, 2008b: An urban parameterization for a global climate model. Part II: Sensitivity to input parameters and the simulated urban heat island in offline simulations. J. Appl. Meteor. Climatol., 47, 10611076, doi:10.1175/2007JAMC1598.1.

    • Search Google Scholar
    • Export Citation
  • Oleson, K. W., G. B. Bonan, J. Feddema, and T. Jackson, 2011: An examination of urban heat island characteristics in a global climate model. Int. J. Climatol., 31, 18481865, doi:10.1002/joc.2201.

    • Search Google Scholar
    • Export Citation
  • Sailor, D. J., and A. A. Pavlova, 2003: Air conditioning market saturation and long-term response of residential cooling energy demand to climate change. Energy, 28, 941951, doi:10.1016/S0360-5442(03)00033-1.

    • Search Google Scholar
    • Export Citation
  • Salamanca, F., and A. Martilli, 2010: A new building energy model coupled with an urban canopy parameterization for urban climate simulations—Part II: Validation with one dimension off-line simulations. Theor. Appl. Climatol., 99, 345356, doi:10.1007/s00704-009-0143-8.

    • Search Google Scholar
    • Export Citation
  • Salamanca, F., A. Krpo, A. Martilli, and A. Clappier, 2010: A new building energy model coupled with an urban canopy parameterization for urban climate simulations—Part I: Formulation, verification, and sensitivity analysis of the model. Theor. Appl. Climatol., 99, 331344, doi:10.1007/s00704-009-0142-9.

    • Search Google Scholar
    • Export Citation
  • Salamanca, F., A. Martilli, M. Tewari, and F. Chen, 2011: A study of the urban boundary layer using different urban parameterizations and high-resolution urban canopy parameters with WRF. J. Appl. Meteor. Climatol., 50, 11071128, doi:10.1175/2010JAMC2538.1.

    • Search Google Scholar
    • Export Citation
  • Salamanca, F., A. Martilli, and C. Yague, 2012: A numerical study of the urban heat island over Madrid during the DESIREX (2008) campaign with WRF and an evaluation of simple mitigation strategies. Int. J. Climatol., 32, 23722386, doi:10.1002/joc.3398.

    • Search Google Scholar
    • Export Citation
  • Salamanca, F., M. Georgescu, A. Mahalov, M. Moustaoui, M. Wang, and B. M. Svoma, 2013: Assessing summertime urban air conditioning consumption in a semiarid environment. Environ. Res. Lett.,8, 034022, doi:10.1088/1748-9326/8/3/034022.

  • Salamanca, F., M. Georgescu, A. Mahalov, M. Moustaoui, and M. Wang, 2014: Anthropogenic heating of the urban environment due to air conditioning. J. Geophys. Res. Atmos.,119, 5949–5965, doi:10.1002/2013JD021225.

  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp. [Available online at http://www.mmm.ucar.edu/wrf/users/docs/arw_v3_bw.pdf.]

  • Stone, B., J. Vargo, and D. Habeeb, 2012: Managing climate change in cities: Will climate action plans work? Landscape Urban Plann., 107, 263271, doi:10.1016/j.landurbplan.2012.05.014.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., K. Hayhoe, J. Arblaster, and J. Meehl, 2006: Going to the extremes: An intercomparison of model-simulated historical and future changes in extreme events. Climatic Change, 79, 185211, doi:10.1007/s10584-006-9051-4.

    • Search Google Scholar
    • Export Citation
  • United Nations Department of Economic and Social Affairs, Population Division, 2012: World urbanization prospects, the 2011 revision. [Available online at http://www.un.org/en/development/desa/publications/world-urbanization-prospects-the-2011-revision.html.]

  • U.S. Department of Energy, 2013: U.S. energy sector vulnerabilities to climate change and extreme weather. DOE Rep. DOE/PI-0013, 84 pp. [Available online at http://energy.gov/sites/prod/files/2013/07/f2/20130716-Energy%20Sector%20Vulnerabilities%20Report.pdf.]

  • U.S. Environmental Protection Agency, 2009: Land-use scenarios: National-scale housing-density scenarios consistent with climate change storylines. EPA Final Rep. EPA/600/R-08/076F. [Available online at http://cfpub.epa.gov/ncea/cfm/recordisplay.cfm?deid=203458.]

  • Valor, E., V. Meneu, and V. Casselles, 2001: Daily air temperature and electricity load in Spain. J. Appl. Meteor., 40, 14131421, doi:10.1175/1520-0450(2001)040<1413:DATAEL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 447 169 11
PDF Downloads 395 50 7