A Regression-Based Approach for Cool-Season Storm Surge Predictions along the New York–New Jersey Coast

Keith J. Roberts School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York

Search for other papers by Keith J. Roberts in
Current site
Google Scholar
PubMed
Close
,
Brian A. Colle School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York

Search for other papers by Brian A. Colle in
Current site
Google Scholar
PubMed
Close
,
Nickitas Georgas Davidson Laboratory, Stevens Institute of Technology, Hoboken, New Jersey

Search for other papers by Nickitas Georgas in
Current site
Google Scholar
PubMed
Close
, and
Stephan B. Munch Southwest Fisheries Science Center, La Jolla, California

Search for other papers by Stephan B. Munch in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A multilinear regression (MLR) approach is developed to predict 3-hourly storm surge during the cool-season months (1 October–31 March 31) between 1979 and 2012 using two different atmospheric reanalysis datasets and water-level observations at three stations along the New York–New Jersey coast (Atlantic City, New Jersey; the Battery in New York City; and Montauk Point, New York). The predictors of the MLR are specified to represent prolonged surface wind stress and a surface sea level pressure minimum for a boxed region near each station. The regression underpredicts relatively large (≥95th percentile) storm maximum surge heights by 6.0%–38.0%. A bias-correction technique reduces the average mean absolute error by 10%–15% at the various stations for storm maximum surge predictions. Using the same forecast surface winds and pressures from the North American Mesoscale (NAM) model between October and March 2010–14, raw and bias-corrected surge predictions at the Battery are compared with raw output from a numerical hydrodynamic model’s [the Stevens Institute of Technology New York Harbor Observing and Prediction System (SIT-NYHOPS)] predictions. The accuracy of surge predictions between the SIT-NYHOPS output and bias-corrected MLR model at the Battery are similar for predictions that meet or exceed the 95th percentile of storm maximum surge heights.

Corresponding author address: Keith Roberts, School of Marine and Atmospheric Sciences, Stony Brook University/SUNY, Stony Brook, NY 11794-5000. E-mail: keithrbt0@gmail.com

Abstract

A multilinear regression (MLR) approach is developed to predict 3-hourly storm surge during the cool-season months (1 October–31 March 31) between 1979 and 2012 using two different atmospheric reanalysis datasets and water-level observations at three stations along the New York–New Jersey coast (Atlantic City, New Jersey; the Battery in New York City; and Montauk Point, New York). The predictors of the MLR are specified to represent prolonged surface wind stress and a surface sea level pressure minimum for a boxed region near each station. The regression underpredicts relatively large (≥95th percentile) storm maximum surge heights by 6.0%–38.0%. A bias-correction technique reduces the average mean absolute error by 10%–15% at the various stations for storm maximum surge predictions. Using the same forecast surface winds and pressures from the North American Mesoscale (NAM) model between October and March 2010–14, raw and bias-corrected surge predictions at the Battery are compared with raw output from a numerical hydrodynamic model’s [the Stevens Institute of Technology New York Harbor Observing and Prediction System (SIT-NYHOPS)] predictions. The accuracy of surge predictions between the SIT-NYHOPS output and bias-corrected MLR model at the Battery are similar for predictions that meet or exceed the 95th percentile of storm maximum surge heights.

Corresponding author address: Keith Roberts, School of Marine and Atmospheric Sciences, Stony Brook University/SUNY, Stony Brook, NY 11794-5000. E-mail: keithrbt0@gmail.com
Save
  • Akaike, H., 1974: A new look at the statistical model identification. IEEE Trans. Autom. Control, 19, 716723, doi:10.1109/TAC.1974.1100705.

    • Search Google Scholar
    • Export Citation
  • Altaf, M. U., T. Butler, X. Luo, C. Dawson, T. Mayo, and H. Hoteit, 2013: Improving short-range ensemble Kalman storm surge forecasting using robust adaptive inflation. Mon. Wea. Rev., 141, 27052720, doi:10.1175/MWR-D-12-00310.1.

    • Search Google Scholar
    • Export Citation
  • Amin, M., 1978: A statistical analysis of storm surges in Torres Strait. Aust. J. Mar. Freshwater Res., 29, 479496, doi:10.1071/MF9780479.

    • Search Google Scholar
    • Export Citation
  • Atallah, E. H., and L. F. Bosart, 2003: The extratropical transition and precipitation distribution of Hurricane Floyd (1999). Mon. Wea. Rev., 131, 10631081, doi:10.1175/1520-0493(2003)131<1063:TETAPD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bernier, N. B., and K. R. Thompson, 2007: Tide-surge interaction off the east coast of Canada and northeastern United States. J. Geophys. Res., 112, C06008, doi:10.1029/2006JC003793.

    • Search Google Scholar
    • Export Citation
  • Blake, E. S., T. B. Kimberlain, R. J. Berg, J. P. Cangialosi, and J. L. Beven III, 2013: Tropical cyclone report: Hurricane Sandy. NOAA/National Hurricane Center Tech. Rep. AL182012, 157 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/AL182012_Sandy.pdf.]

  • Brown, J. D., T. Spencer, and I. Moeller, 2007: Modeling storm surge flooding of an urban area with particular reference to modeling uncertainties: A case study of Canvey Island, United Kingdom. Water Resour. Res., 43, W06402, doi:10.1029/2005WR004597.

    • Search Google Scholar
    • Export Citation
  • Burnham, K. P., and D. R. Anderson, 2004: Multimodel inference understanding AIC and BIC in model selection. Sociol. Methods Res., 33, 261304, doi:10.1177/0049124104268644.

    • Search Google Scholar
    • Export Citation
  • Burroughs, L. B., and W. A. Shaffer, 1997: East Coast extratropical storm surge and beach erosion guidance. NOAA/NWS Tech. Procedures Bull. 436, 24 pp. [Available online at http://www.nws.noaa.gov/om/tpb/beach.pdf.]

  • Chang, E. K. M., 2013: CMIP5 projection of significant reduction in extratropical cyclone activity over North America. J. Climate, 26, 99039922, doi:10.1175/JCLI-D-13-00209.1.

    • Search Google Scholar
    • Export Citation
  • Chang, E. K. M., Y. Guo, and X. Xia, 2012: CMIP5 multimodel ensemble projection of storm track change under global warming. J. Geophys. Res., 117, D23118, doi:10.1029/2012JD018578.

    • Search Google Scholar
    • Export Citation
  • Clancy, R., J. Kaitala, and L. Zambresky, 1986: The Fleet Numerical Oceanography Center Global Spectral Ocean Wave Model. Bull. Amer. Meteor. Soc., 67, 498512, doi:10.1175/1520-0477(1986)067<0498:TFNOCG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., 2003: Numerical simulations of the extratropical transition of Floyd (1999): Structural evolution and responsible mechanisms for the heavy rainfall over the northeast United States. Mon. Wea. Rev., 131, 29052926, doi:10.1175/1520-0493(2003)131<2905:NSOTET>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., K. Rojowsky, and F. Buonaito, 2010: New York City storm surges: Climatology and an analysis of the wind and cyclone evolution. J. Appl. Meteor. Climatol., 49, 85100, doi:10.1175/2009JAMC2189.1.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., Z. Zhang, K. A. Lombardo, E. Chang, P. Liu, and M. Zhang, 2013: Historical evaluation and future prediction of eastern North America and western Atlantic extratropical cyclones in the CMIP5 models during the cool season. J. Climate, 26, 68826903, doi:10.1175/JCLI-D-12-00498.1.

    • Search Google Scholar
    • Export Citation
  • de Oliveira, M. M. F., N. F. F. Ebecken, J. L. F. de Oliveira, and I. de Azevedo Santos, 2009: Neural network model to predict a storm surge. J. Appl. Meteor. Climatol., 48, 143155, doi:10.1175/2008JAMC1907.1.

    • Search Google Scholar
    • Export Citation
  • Di Liberto, T., B. A. Colle, N. Georgas, A. F. Blumberg, and A. A. Taylor, 2011: Verification of a multimodel storm surge ensemble around New York City and Long Island for the cool season. Wea. Forecasting, 26, 922939, doi:10.1175/WAF-D-10-05055.1.

    • Search Google Scholar
    • Export Citation
  • Drag, W., 2000: A comparative retrospective on the Perfect Storm. Boston National Weather Service Office, accessed 1 July 2011. [Available online at http://www.erh.noaa.gov/box/PS.htm.]

  • Forbes, C., J. Rhome, C. Mattocks, and A. Taylor, 2014: Predicting the storm surge threat of Hurricane Sandy with the National Weather Service SLOSH model. J. Mar. Sci. Eng., 2, 437476, doi:10.3390/jmse2020437.

    • Search Google Scholar
    • Export Citation
  • Galarneau, T. J., C. A. Davis, and M. A. Shapiro, 2013: Intensification of Hurricane Sandy (2012) through extratropical warm core seclusion. Mon. Wea. Rev., 141, 42964321, doi:10.1175/MWR-D-13-00181.1.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1977: Review of drag coefficients over oceans and continents. Mon. Wea. Rev., 105, 915929, doi:10.1175/1520-0493(1977)105<0915:RODCOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Georgas, N., 2010: Establishing confidence in marine forecast systems: The design of a high fidelity marine forecast model for the NY/NJ Harbor estuary and its adjoining coastal waters. Ph.D. thesis, Stevens Institute of Technology, 272 pp. [Available online at http://web.stevens.edu/ses/documents/fileadmin/documents/pdf/PhD-dissertation_signed-o.pdf.]

  • Georgas, N., and A. F. Blumberg, 2008: The New York Bight shelf–harbor dynamic study: Ocean forecast sensitivity to forecasts of atmospheric forcing. Office of Naval Research Final Rep., 50 pp. [Available online at http://web.stevens.edu/ses/documents/fileadmin/documents/pdf/NYBight_ONR08_Stevens.pdf.]

  • Georgas, N., and A. F. Blumberg, 2010: Establishing confidence in marine forecast systems: The design and skill assessment of the New York Harbor Observation and Prediction System, version 3 (NYHOPS v3). Proc. 11th Int. Conf. in Estuarine and Coastal Modeling (ECM11), Seattle, WA, American Society Civil Engineers, 660–685, doi:10.1061/41121(388)39.

  • Georgas, N., A. Blumberg, and T. Herrington, 2007: An operational coastal wave forecasting model for New Jersey and Long Island waters. Shore Beach, 75, 3035.

    • Search Google Scholar
    • Export Citation
  • Georgas, N., P. Orton, A. Blumberg, L. Cohen, D. Zarrilli, and L. Yin, 2014: The impact of tidal phase on Hurricane Sandy’s flooding around New York City and Long Island Sound. J. Extreme Events, 01, 1450006, doi:10.1142/S2345737614500067.

    • Search Google Scholar
    • Export Citation
  • Gjevik, B., and L. P. Røed, 1976: Storm surges along the western coast of Norway. Tellus, 28, 166182, doi:10.1111/j.2153-3490.1976.tb00664.x.

    • Search Google Scholar
    • Export Citation
  • Hall, T. M., and A. H. Sobel, 2013: On the impact angle of Hurricane Sandy’s New Jersey landfall. Geophys. Res. Lett., 40, 23122315, doi:10.1002/grl.50395.

    • Search Google Scholar
    • Export Citation
  • Harris, D. L., and A. Angelo, 1963: A regression model for storm surge prediction. Mon. Wea. Rev., 91, 710726, doi:10.1175/1520-0493(1963)091<0710:ARMFSS>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hill, D., M. J. Bowman, and J. S. Khinda, Eds., 2013: Against the Deluge: Storm Surge Barriers to Protect New York City. American Society of Civil Engineers, 268 pp, doi:10.1061/9780784412527.

  • Howard, K., M. Splitt, S. Lazarus, G. Zarillo, S. Chiao, P. Santos, and D. Sharp, 2009: The impact of atmospheric model resolution on a coupled wind/wave forecast system. Preprints, 16th Conf. on Air–Sea Interaction, Phoenix, AZ, Amer. Meteor. Soc., 9.2. [Available online at https://ams.confex.com/ams/pdfpapers/149162.pdf.]

  • Klein, W., B. M. Lewis, and E. Isadore, 1959: Objective prediction of five-day mean temperatures during winter. J. Meteor., 16, 672682, doi:10.1175/1520-0469(1959)016<0672:OPOFDM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Komar, P. D., 1998: Beach Processes and Sedimentation. 2nd ed. Prentice Hall, 544 pp.

  • Large, W. G., and S. Pond, 1981: Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr., 11, 324336, doi:10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mel, R., and P. Lionello, 2014: Storm surge ensemble prediction for the city of Venice. Wea. Forecasting, 29, 10441057, doi:10.1175/WAF-D-13-00117.1.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Mizuta, R., M. Matsueda, H. Endo, and S. Yukimoto, 2011: Future change in extratropical cyclones associated with change in the upper troposphere. J. Climate, 24, 64566470, doi:10.1175/2011JCLI3969.1.

    • Search Google Scholar
    • Export Citation
  • Müller-Navarra, S. H., and K. Knüpffer, 2010: Improvement of water level forecasts for tidal harbours by means of model output statistics (MOS). Part I (Skew surge forecast). Bundesamt für Seeschifffahrt und Hydrographie Rep. 47, 22 pp. [Available online at http://www.bsh.de/de/Produkte/Buecher/Berichte_/Bericht47/BSH_Bericht_47.pdf.]

  • National Weather Service, 1994: The great nor’easter of December 1992. NWS Eastern Region Disaster Survey Rep., 59 pp. [Available from the National Weather Service, Eastern Region Headquarters, 630 Johnson Ave., Bohemia, NY 11716.]

  • Orton, P., N. Georgas, A. Blumberg, and J. Pullen, 2012: Detailed modeling of recent severe storm tides in estuaries of the New York City region. J. Geophys. Res., 117, C09030, doi:10.1029/2012JC008220.

    • Search Google Scholar
    • Export Citation
  • Pore, N. A., 1964: The relation of wind and pressure to extratropical storm surges at Atlantic City. J. Appl. Meteor., 3, 155163, doi:10.1175/1520-0450(1964)003<0155:TROWAP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pore, N. A., 1965: Chesapeake Bay extratropical storm surges. Chesapeake Sci., 6, 172182, doi:10.2307/1350850.

  • Pore, N. A., W. S. Richardson, and H. P. Perrotti, 1974: Forecasting extratropical storm surges for the northeast coast of the United States. NOAA/NWS Tech. Memo. 50, 70 pp.

  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Salmun, H., and A. Molod, 2015: The use of a statistical model of storm surge as a bias correction for dynamical surge models and its applicability along the U.S. East Coast. J. Mar. Sci. Eng., 3, 7386, doi:10.3390/jmse3010073.

    • Search Google Scholar
    • Export Citation
  • Salmun, H., A. Molod, K. Wisniewska, and F. S. Buonaiuto, 2011: Statistical prediction of the storm surge associated with cool-weather storms at the Battery, New York. J. Appl. Meteor. Climatol., 50, 273282, doi:10.1175/2010JAMC2459.1.

    • Search Google Scholar
    • Export Citation
  • Scileppi, E., and J. P. Donnelly, 2007: Sedimentary evidence of hurricane strikes in western Long Island, New York. Geochem. Geophys. Geosyst., 8, Q06011, doi:10.1029/2006GC001463.

    • Search Google Scholar
    • Export Citation
  • Shen, J., W. Gong, and H. Wang, 2005: Simulation of Hurricane Isabel using the Advanced Circulation Model (ADCIRC). Hurricane Isabel in Perspective: Proceedings of a Conference, K. G. Sellner and N. Fisher, Eds., Chesapeake Research Consortium, 107–116.

  • Siek, M., and D. P. Solomatine, 2010: Nonlinear chaotic model for predicting storm surges. Nonlinear Processes Geophys., 17, 405420, doi:10.5194/npg-17-405-2010.

    • Search Google Scholar
    • Export Citation
  • Talke, S. A., P. Orton, and D. A. Jay, 2014: Increasing storm tides in New York Harbor, 1844–2013. Geophys. Res. Lett., 41, 31493155, doi:10.1002/2014GL059574.

    • Search Google Scholar
    • Export Citation
  • Weaver, R. J., 2004: Effect of wave forces on storm surge. M.S. thesis, Dept. of Civil and Coastal Engineering, University of Florida, 75 pp. [Available online at http://www.essie.ufl.edu/~slinn/weaver.slinn.surge.pdf.]

  • Weisberg, R. H., and L. Zheng, 2008: Hurricane storm surge simulations comparing three-dimensional with two-dimensional formulations based on an Ivan-like storm over the Tampa Bay, Florida region. J. Geophys. Res., 113, C12001, doi:10.1029/2008JC005115.

    • Search Google Scholar
    • Export Citation
  • Westerink, J. J., R. A. Luettich, and N. Scheffner, 1993: Development of a tidal constituent database for the western North Atlantic and Gulf of Mexico. Rep. 3, ADCIRC: An Advanced Three-Dimensional Circulation Model for Shelves, Coasts, and Estuaries, Dredging Research Program Tech. Rep. DRP-92-6, 154 pp. [Available online at http://www.unc.edu/ims/adcirc/publications/1993/1993_Westerink02.pdf.]

  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

  • Zhang, K., B. C. Douglas, and S. P. Leatherman, 2000: Twentieth-century storm activity along the U.S. east coast. J. Climate, 13, 17481761, doi:10.1175/1520-0442(2000)013<1748:TCSAAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 387 115 10
PDF Downloads 254 60 4