An Improved Trajectory Model to Evaluate the Collection Performance of Snow Gauges

Matteo Colli Department of Civil, Chemical and Environmental Engineering, University of Genoa, and WMO/CIMO Lead Centre “B. Castelli” on Precipitation Intensity, Genoa, Italy

Search for other papers by Matteo Colli in
Current site
Google Scholar
PubMed
Close
,
Roy Rasmussen National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Roy Rasmussen in
Current site
Google Scholar
PubMed
Close
,
Julie M. Thériault Department of Earth and Atmospheric Sciences, Université du Québec à Montréal, Montreal, Quebec, Canada

Search for other papers by Julie M. Thériault in
Current site
Google Scholar
PubMed
Close
,
Luca G. Lanza Department of Civil, Chemical and Environmental Engineering, University of Genoa, and WMO/CIMO Lead Centre “B. Castelli” on Precipitation Intensity, Genoa, Italy

Search for other papers by Luca G. Lanza in
Current site
Google Scholar
PubMed
Close
,
C. Bruce Baker Atmospheric Turbulence and Diffusion Division, National Oceanic and Atmospheric Administration, Oak Ridge, Tennessee

Search for other papers by C. Bruce Baker in
Current site
Google Scholar
PubMed
Close
, and
John Kochendorfer Atmospheric Turbulence and Diffusion Division, National Oceanic and Atmospheric Administration, Oak Ridge, Tennessee

Search for other papers by John Kochendorfer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Recent studies have used numerical models to estimate the collection efficiency of solid precipitation gauges when exposed to the wind in both shielded and unshielded configurations. The models used computational fluid dynamics (CFD) simulations of the airflow pattern generated by the aerodynamic response to the gauge–shield geometry. These are used as initial conditions to perform Lagrangian tracking of solid precipitation particles. Validation of the results against field observations yielded similarities in the overall behavior, but the model output only approximately reproduced the dependence of the experimental collection efficiency on wind speed. This paper presents an improved snowflake trajectory modeling scheme due to the inclusion of a dynamically determined drag coefficient. The drag coefficient was estimated using the local Reynolds number as derived from CFD simulations within a time-independent Reynolds-averaged Navier–Stokes approach. The proposed dynamic model greatly improves the consistency of results with the field observations recently obtained at the Marshall Field winter precipitation test bed in Boulder, Colorado.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Matteo Colli, Department of Civil, Chemical and Environmental Engineering, University of Genoa, Via Montallegro 1, CAP 16145, Genoa, Italy. E-mail: matteo.colli@unige.it

Abstract

Recent studies have used numerical models to estimate the collection efficiency of solid precipitation gauges when exposed to the wind in both shielded and unshielded configurations. The models used computational fluid dynamics (CFD) simulations of the airflow pattern generated by the aerodynamic response to the gauge–shield geometry. These are used as initial conditions to perform Lagrangian tracking of solid precipitation particles. Validation of the results against field observations yielded similarities in the overall behavior, but the model output only approximately reproduced the dependence of the experimental collection efficiency on wind speed. This paper presents an improved snowflake trajectory modeling scheme due to the inclusion of a dynamically determined drag coefficient. The drag coefficient was estimated using the local Reynolds number as derived from CFD simulations within a time-independent Reynolds-averaged Navier–Stokes approach. The proposed dynamic model greatly improves the consistency of results with the field observations recently obtained at the Marshall Field winter precipitation test bed in Boulder, Colorado.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Matteo Colli, Department of Civil, Chemical and Environmental Engineering, University of Genoa, Via Montallegro 1, CAP 16145, Genoa, Italy. E-mail: matteo.colli@unige.it
Save
  • Alter, J., 1937: Shielded storage precipitation gages. Mon. Wea. Rev., 65, 262265, doi:10.1175/1520-0493(1937)65<262:SSPG>2.0.CO;2.

  • Beard, K., 1980: The effect of altitude and electrical force on the terminal velocity of hydrometeors. J. Atmos. Sci., 37, 13631374, doi:10.1175/1520-0469(1980)037<1363:TEOAAE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Böhm, J., 1992: A general hydrodynamic theory for mixed-phase microphysics. Part I: Drag and fall speeds of hydrometeors. Atmos. Res., 27, 253274, doi:10.1016/0169-8095(92)90035-9.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., K. Ikeda, G. Zhang, M. Schnhuber, and R. M. Rasmussen, 2007: A statistical and physical description of hydrometeor distributions in Colorado snowstorms using a video disdrometer. J. Appl. Meteor. Climatol., 46, 634650, doi:10.1175/JAM2489.1.

    • Search Google Scholar
    • Export Citation
  • Colli, M., 2014: Assessing the accuracy of precipitation gauges: A CFD approach to model wind induced errors. Ph.D. thesis, University of Genoa, 209 pp., doi:10.13140/RG.2.1.4408.1767.

  • Duchon, C., 2008: Using vibrating-wire technology for precipitation measurements. Precipitation: Advances in Measurement, Estimation and Prediction, S. C. Michaelides, Ed., Springer, 33–58.

  • Goodison, B., P. Louie, and D. Yang, 1998: WMO solid precipitation measurement intercomparison: Final report. WMO Tech. Doc. 872, 212 pp. [Available online at http://library.wmo.int/opac/index.php?lvl=notice_display&id=6441#.VbiFwPntlBd.]

  • Houze, R. A., P. V. Hobbs, P. H. Herzegh, and D. B. Parsons, 1979: Size distributions of precipitation particles in frontal clouds. J. Atmos. Sci., 36, 156162, doi:10.1175/1520-0469(1979)036<0156:SDOPPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khvorostyanov, V., and J. Curry, 2005: Fall velocities of hydrometeors in the atmosphere: Refinements to a continuous analytical power law. J. Atmos. Sci., 62, 43434357, doi:10.1175/JAS3622.1.

    • Search Google Scholar
    • Export Citation
  • Larson, L. W., 1993: ASOS heated tipping bucket precipitation gage (Friez) evaluation at WSFO, Bismarck, North Dakota, March 1992–March 1993. NWS Central Region Final Rep., 54 pp.

  • Marshall, J. S., and W. M. K. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165–166, doi:10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D., 1996: Use of mass- and area-dimensional power laws for determining precipitation particle terminal velocities. J. Atmos. Sci., 53, 17101723, doi:10.1175/1520-0469(1996)053<1710:UOMAAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nešpor, V., and B. Sevruk, 1999: Estimation of wind-induced error of rainfall gauge measurements using a numerical simulation. J. Atmos. Oceanic Technol., 16, 450464, doi:10.1175/1520-0426(1999)016<0450:EOWIEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nitu, R., and K. Wong, 2010: CIMO survey on national summaries of methods and instruments for solid precipitation measurements at automatic weather stations. WMO Instruments and Observing Methods Tech. Rep. 102, WMO/TD 1544, 57 pp. [Available online at http://www.wmo.int/pages/prog/www/IMOP/publications/IOM-102_SolidPrecip.pdf.]

  • Nitu, R., and Coauthors, 2012: WMO intercomparison of instruments and methods for the measurement of solid precipitation and snow on the ground: Organization of the experiment. Extended Abstracts, WMO Technical Conf. on Meteorological and Environmental Instruments and Methods of Observations, Brussels, Belgium, World Meteorological Organization, 10 pp. [Available online at https://www.wmo.int/pages/prog/www/IMOP/publications/IOM-109_TECO-2012/Session1/O1_01_Nitu_SPICE.pdf.]

  • Rasmussen, R., J. Vivekanandan, J. Cole, B. Myers, and C. Masters, 1999: The estimation of snowfall rate using visibility. J. Appl. Meteor., 38, 1542–1563, doi:10.1175/1520-0450(1999)038<1542:TEOSRU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R., and Coauthors, 2012: How well are we measuring snow: The NOAA/FAA/NCAR winter precipitation test bed. Bull. Amer. Meteor. Soc., 93, 811–829, doi:10.1175/BAMS-D-11-00052.1.

    • Search Google Scholar
    • Export Citation
  • Savina, M., B. Schppi, P. Molnar, P. Burlando, and B. Sevruk, 2012: Comparison of a tipping-bucket and electronic weighing precipitation gage for snowfall. Atmos. Res., 103, 4551, doi:10.1016/j.atmosres.2011.06.010.

    • Search Google Scholar
    • Export Citation
  • Sevruk, B., and S. Klemm, 1989: Catalogue of national standard precipitation gauges. WMO Instruments and Observing Methods Rep. 39, WMO/TD 313, 50 pp. [Available online at https://www.wmo.int/pages/prog/www/IMOP/publications/IOM-39.pdf.]

  • Sevruk, B., J. A. Hertig, and R. Spiess, 1991: The effect of a precipitation gauge orifice rim on the wind field deformation as investigated in a wind tunnel. Atmos. Environ., 25, 11731179, doi:10.1016/0960-1686(91)90228-Y.

    • Search Google Scholar
    • Export Citation
  • Smith, C., 2009: The relationship between snowfall catch efficiency and wind speed for the GeonorT-200B precipitation gauge utilizing various wind shield configurations. Proc. 77th Western Snow Conf., Canmore, AB, Canada, 115–121.

  • Sugiura, K., D. Yang, and T. Ohata, 2003: Systematic error aspects of gauge-measured solid precipitation in the Arctic, Barrow, Alaska. Geophys. Res. Lett., 30, 1192, doi:10.1029/2002GL015547.

    • Search Google Scholar
    • Export Citation
  • Sugiura, K., T. Ohata, and D. Yang, 2006: Catch characteristics of precipitation gauges in high-latitude regions with high winds. J. Hydrometeor., 7, 984994, doi:10.1175/JHM542.1.

    • Search Google Scholar
    • Export Citation
  • Thériault, J. M., R. Rasmussen, K. Ikeda, and S. Landolt, 2012: Dependence of snow gauge collection efficiency on snowflake characteristics. J. Appl. Meteor. Climatol., 51, 745762, doi:10.1175/JAMC-D-11-0116.1.

    • Search Google Scholar
    • Export Citation
  • Thériault, J. M., R. Rasmussen, E. Petro, J. Trépanier, M. Colli, and L. G. Lanza, 2015: Impact of wind direction, wind speed, and particle characteristics on the collection efficiency of the double fence intercomparison reference. J. Appl. Meteor. Climatol., doi:10.1175/JAMC-D-15-0034.1, in press.

    • Search Google Scholar
    • Export Citation
  • Tumbusch, M., 2003: Evaluation of OTT PLUVIO Precipitation Gage versus Belfort Universal Precipitation Gage 5-780 for the National Atmospheric Deposition Program. U.S. Geological Survey Water-Resources Investigations Rep. 03-4167, 25 pp. [Available online at http://pubs.usgs.gov/wri/wrir034167/wrir034167.pdf.]

  • Wolff, M., K. Isaksen, A. Petersen-Øverleir, K. Ødemark, T. Reitan, and R. Bækkan, 2014: Derivation of a new continuous adjustment function for correcting wind-induced loss of solid precipitation: Results of a Norwegian field study. Hydrol. Earth Syst. Sci. Discuss, 11, 10 04310 084, doi:10.5194/hessd-11-10043-2014.

    • Search Google Scholar
    • Export Citation
  • Yang, D., J. R. Metcalfe, B. E. Goodison, and E. Mekis, 1993: An evaluation of the double fence intercomparison reference gauge. Proc. 50th Meeting of the Eastern Snow Conf., Quebec City, QC, Canada, 105–111.

  • Yang, D., and Coauthors, 1999: Quantification of precipitation measurement discontinuity induced by wind shields on national gauges. Water Resour. Res., 35, 491–508, doi:10.1029/1998WR900042.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 574 117 13
PDF Downloads 227 70 6