Comparative Assessment of COSMIC Radio Occultation Data and TIMED/SABER Satellite Data over China

Z. Q. Fan College of Meteorology and Oceanology, People’s Liberation Army University of Science and Technology, Nanjing, China

Search for other papers by Z. Q. Fan in
Current site
Google Scholar
PubMed
Close
,
Z. Sheng College of Meteorology and Oceanology, People’s Liberation Army University of Science and Technology, Nanjing, China

Search for other papers by Z. Sheng in
Current site
Google Scholar
PubMed
Close
,
H. Q. Shi College of Meteorology and Oceanology, People’s Liberation Army University of Science and Technology, Nanjing, China

Search for other papers by H. Q. Shi in
Current site
Google Scholar
PubMed
Close
,
X. Yi Beijing Applied Meteorological Institute, Beijing, China

Search for other papers by X. Yi in
Current site
Google Scholar
PubMed
Close
,
Y. Jiang College of Meteorology and Oceanology, People’s Liberation Army University of Science and Technology, Nanjing, China

Search for other papers by Y. Jiang in
Current site
Google Scholar
PubMed
Close
, and
E. Z. Zhu College of Meteorology and Oceanology, People’s Liberation Army University of Science and Technology, Nanjing, China

Search for other papers by E. Z. Zhu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The accuracy of temperature data from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) radio occultation and Thermosphere, Ionosphere, Mesosphere Energetics, and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry (TIMED/SABER) observation over China is analyzed. High-resolution sounding data are used to assess the accuracy of these two kinds of satellite observation data at corresponding heights, and the two sets of data are compared in the height range 15–40 km. Very good agreement between radiosondes and COSMIC is observed in the stratosphere. In the troposphere COSMIC temperatures are about 2 K higher than the radiosonde observations. SABER detection at 15–32 km agrees well with a maximum warm bias of ~2 K around 25-km altitude. The comparison between SABER and COSMIC for altitudes 15–40 km also indicates higher temperatures of SABER in the lower stratosphere. The standard deviations are all greater than 2.5 K and are larger near 15 km and smallest at 20 km. The temperature deviation and in particular the standard deviation comparing SABER and COSMIC changes with altitude, season, and latitude. The results of this comparative assessment can offer a basis for research into the application of COSMIC and TIMED/SABER over China.

Corresponding author address: Z. Sheng and H. Q. Shi, College of Meteorology and Oceanology, PLA University of Science and Technology, Nanjing 211101, China. E-mail: 19994035@sina.com

Abstract

The accuracy of temperature data from the Constellation Observing System for Meteorology, Ionosphere and Climate (COSMIC) radio occultation and Thermosphere, Ionosphere, Mesosphere Energetics, and Dynamics/Sounding of the Atmosphere using Broadband Emission Radiometry (TIMED/SABER) observation over China is analyzed. High-resolution sounding data are used to assess the accuracy of these two kinds of satellite observation data at corresponding heights, and the two sets of data are compared in the height range 15–40 km. Very good agreement between radiosondes and COSMIC is observed in the stratosphere. In the troposphere COSMIC temperatures are about 2 K higher than the radiosonde observations. SABER detection at 15–32 km agrees well with a maximum warm bias of ~2 K around 25-km altitude. The comparison between SABER and COSMIC for altitudes 15–40 km also indicates higher temperatures of SABER in the lower stratosphere. The standard deviations are all greater than 2.5 K and are larger near 15 km and smallest at 20 km. The temperature deviation and in particular the standard deviation comparing SABER and COSMIC changes with altitude, season, and latitude. The results of this comparative assessment can offer a basis for research into the application of COSMIC and TIMED/SABER over China.

Corresponding author address: Z. Sheng and H. Q. Shi, College of Meteorology and Oceanology, PLA University of Science and Technology, Nanjing 211101, China. E-mail: 19994035@sina.com
Save
  • Anthes, R. A., P. A. Bernhardt, and Y. Chen, 2008: The COSMIC/FORMOSAT‐3 Mission: Early results. Bull. Amer. Meteor. Soc., 89, 313333, doi:10.1175/BAMS-89-3-313.

    • Search Google Scholar
    • Export Citation
  • Baldwin, M. P., and T. J. Dunkerton, 2001: Stratospheric harbingers of anomalous weather regimes. Science, 294, 581584, doi:10.1126/science.1063315.

    • Search Google Scholar
    • Export Citation
  • Chen, S.-Y., C.-Y. Huang, Y.-H. Kuo, and S. Sokolovskiy, 2011: Observational error estimation of FORMOSAT-3/COSMIC GPS radio occultation data. Mon. Wea. Rev., 139, 853865, doi:10.1175/2010MWR3260.1.

    • Search Google Scholar
    • Export Citation
  • Eckermann, S. D., and P. Preusse, 1999: Global measurements of stratospheric mountain waves from space. Science, 286, 15341537, doi:10.1126/science.286.5444.1534.

    • Search Google Scholar
    • Export Citation
  • Ern, M., P. Preusse, M. Krebsbach, M. G. Mlynczak, and J. M. Russell III, 2008: Equatorial wave analysis from SABER and ECMWF temperatures. Atmos. Chem. Phys., 8, 845869, doi:10.5194/acp-8-845-2008.

    • Search Google Scholar
    • Export Citation
  • Ern, M., P. Preusse, J. C. Gille, C. L. Hepplewhite, M. G. Mlynczak, J. M. Russell III, and M. Riese, 2011: Implications for atmospheric dynamics derived from global observations of gravity wave momentum flux in stratosphere and mesosphere. J. Geophys. Res., 116, D19107, doi:10.1029/2011JD015821.

    • Search Google Scholar
    • Export Citation
  • Fan, Z. Q., Z. Sheng, L. Wan, H. Q. Shi, and Y. Jiang, 2013: Comprehensive assessment of the accuracy of the data from near space meteorological rocket sounding. Acta Phys. Sin., 62, 199601, doi:10.7498/aps.62.199601.

    • Search Google Scholar
    • Export Citation
  • Gong, X. Y., X. Hu, X. C. Wu, and C. Y. Xiao, 2013: Comparison of temperature measurements between COSMIC atmospheric radio occultation and SABER/TIMED. Chin. J. Geophys., 56, 21522162.

    • Search Google Scholar
    • Export Citation
  • Guo, P., Y. H. Kuo, S. V. Sokolovskiy, and D. H. Lenschow, 2011: Estimating atmospheric boundary layer depth using COSMIC radio occultation data. J. Atmos. Sci., 68, 17031713, doi:10.1175/2011JAS3612.1.

    • Search Google Scholar
    • Export Citation
  • He, W. Y., S. P. Ho, H. B. Chen, X. J. Zhou, D. Hunt, and Y. H. Kuo, 2009: Assessment of radiosonde temperature measurements in the upper troposphere and lower stratosphere using COSMIC radio occultation data. Geophys. Res. Lett., 36, L17807, doi:10.1029/2009GL038712.

    • Search Google Scholar
    • Export Citation
  • Ho, S.-P., M. Goldberg, Y. H. Kuo, Z. Z. Cheng, and W. Schreiner, 2009: Calibration of temperature in the lower stratosphere from microwave measurements using COSMIC radio occultation data: Preliminary results. Terr. Atmos. Oceanic Sci., 20, 87100, doi:10.3319/TAO.2007.12.06.01(F3C).

    • Search Google Scholar
    • Export Citation
  • Ho, S.-P., X. Zhou, Y.-H. Kuo, D. Hunt, and J. H. Wang, 2010: Global evaluation of radiosonde water vapor systematic biases using GPS radio occultation from COSMIC and ECMWF analysis. Remote Sens., 2, 13201330, doi:10.3390/rs2051320.

    • Search Google Scholar
    • Export Citation
  • Jiang, J. H., S. D. Eckermann, D. L. Wu, and J. Ma, 2004: A search for mountain waves in MLS stratospheric limb radiances from the winter Northern Hemisphere: Data analysis and global mountain wave modeling. J. Geophys. Res., 109, D03107, doi:10.1029/2003JD003974.

    • Search Google Scholar
    • Export Citation
  • Jiang, Y., Z. Sheng, and H. Q. Shi, 2013: Comparisons of tropopause derived from COSMIC measurements at Nanjing since August 2006. J. Atmos. Sol.-Terr. Phys., 98, 3138, doi:10.1016/j.jastp.2013.03.013.

    • Search Google Scholar
    • Export Citation
  • Kidston J., A. A. Scaife, S. C. Hardiman, D. M. Mitchell, N. Butchart, M. P. Baldwin, and L. J. Gray, 2015: Stratospheric influence on tropospheric jet streams, storm tracks and surface weather. Nat. Geosci., 8, 433440, doi:10.1038/ngeo2424.

    • Search Google Scholar
    • Export Citation
  • Kishore, P., and Coauthors, 2011: Global distribution of water vapour observed by COSMIC GPS RO: Comparison with GPS radiosonde, NCEP and JRA-25 reanalysis data sets. J. Atmos. Sol.-Terr. Phys., 73, 18491860, doi:10.1016/j.jastp.2011.04.017.

    • Search Google Scholar
    • Export Citation
  • Kuo, Y.-H., T.-K. Wee, S. Sokolovskiy, C. Rocken, W. Schreiner, D. Hunt, and R. A. Anthes, 2004: Inversion and error estimation of GPS radio occultation data. J. Meteor. Soc. Japan, 82, 507531, doi:10.2151/jmsj.2004.507.

    • Search Google Scholar
    • Export Citation
  • Lange M., and C. Jacobi, 2003: Analysis of gravity waves from radio occultation measurements. First CHAMP Mission Results for Gravity, Magnetic and Atmospheric Studies, C. Reigber, H. Lühr, and P. Schwintzer, Eds., Springer, 479–484.

  • Mertens, C. J., M. G. Mlynczak, M. Lopez-Puertas, P. P. Wintersteiner, R. H. Picard, J. R. Winick, L. L. Gordley, and J. M. Russell, 2001: Retrieval of mesospheric and lower thermospheric kinetic temperature from measurements of CO2 15 µm Earth limb emission under non-LTE conditions. Geophys. Res. Lett., 28, 13911394, doi:10.1029/2000GL012189.

    • Search Google Scholar
    • Export Citation
  • Preusse, P., A. D. Doernbrack, S. D. Eckermann, M. Riese, B. Schaeler, J. Bacmeister, D. Broutman, and K. U. Grossmann, 2002: Space based measurements of stratospheric mountain waves by CRISTA 1: Sensitivity, analysis method, and a case study. J. Geophys. Res., 107, 8178, doi:10.1029/2001JD000699.

    • Search Google Scholar
    • Export Citation
  • Preusse, P., S. D. Eckermann, M. Ern, F. J. Schmidlin, M. J. Alexander, and D. Offermann, 2003: Infrared limb sounding measurements of middle-atmosphere gravity waves by CRISTA. Remote Sensing of Clouds and the Atmosphere VII, K. P. Schaefer et al., Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 4882), 134–148, doi:10.1117/12.463374.

  • Rechou, A., J. Arnault, P. Dalin, and S. Kirkwood, 2013: Case study of stratospheric gravity waves of convective origin over Arctic Scandinavia—VHF radar observations and numerical modelling. Ann. Geophys., 31, 239250, doi:10.5194/angeo-31-239-2013.

    • Search Google Scholar
    • Export Citation
  • Remsberg, E. E., and Coauthors, 2004: The Nimbus 7 LIMS version 6 radiance conditioning and temperature retrieval methods and results. J. Quant. Spectrosc. Radiat. Transfer, 86, 395424, doi:10.1016/j.jqsrt.2003.12.007.

    • Search Google Scholar
    • Export Citation
  • Remsberg, E. E., and Coauthors, 2008: Assessment of the quality of the Version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER. J. Geophys. Res., 113, D17101, doi:10.1029/2008JD010013.

    • Search Google Scholar
    • Export Citation
  • Rocken, C., Y.-H. Kuo, W. Schreiner, D. Hunt, and S. Sokolovskiy, 2000: COSMIC system description. Terr. Atmos. Oceanic Sci., 11, 2152.

    • Search Google Scholar
    • Export Citation
  • Sasi, M. N., and Coauthors, 2003: A study of equatorial wave characteristics using rockets, balloons, lidar and radar. Adv. Space Res., 32, 813818, doi:10.1016/S0273-1177(03)00412-5.

    • Search Google Scholar
    • Export Citation
  • Scaife, A. A., and Coauthors, 2014: Predictability of the quasi-biennial oscillation and its northern winter teleconnection on seasonal to decadal timescales. Geophys. Res. Lett., 41, 1752–1758, doi:10.1002/2013GL059160.

    • Search Google Scholar
    • Export Citation
  • Schmidt, T., J.-P. Cammas, H. G. J. Smit, S. Heise, J. Wickert, and A. Haser, 2010: Observational characteristics of the tropopause inversion layer derived from CHAMP/GRACE radio occultations and MOZAIC aircraft data. J. Geophys. Res., 115, D24304, doi:10.1029/2010JD014284.

    • Search Google Scholar
    • Export Citation
  • Schreiner, W., C. Rocken, S. Sokolovskiy, S. Syndergaard, and D. Hunt, 2007: Estimates of the precision of GPS radio occultations from the COSMIC/FORMOSAT-3 mission. Geophys. Res. Lett., 34, L04808, doi:10.1029/2006GL027557.

    • Search Google Scholar
    • Export Citation
  • Sheng, Z., 2013: The estimation of lower refractivity uncertainty from radar sea clutter using the Bayesian–MCMC method. Chin. Phys., 22B, 029302, doi:10.1088/1674-1056/22/2/029302.

    • Search Google Scholar
    • Export Citation
  • Sica, R. J., and Coauthors, 2008: Validation of the Atmospheric Chemistry Experiment (ACE) version 2.2 temperature using ground-based and space-borne measurements. Atmos. Chem. Phys., 8, 3562, doi:10.5194/acp-8-35-2008.

    • Search Google Scholar
    • Export Citation
  • Sivakumar, V., P. Vishnu Prasanth, P. Kishore, H. Bencherif, and P. Keckhut, 2011: Rayleigh LIDAR and satellite (HALOE, SABER, CHAMP and COSMIC) measurements of stratosphere mesosphere temperature over a southern sub-tropical site, Reunion (20.8°S; 55.5°E): Climatology and comparison study. Ann. Geophys., 29, 649662, doi:10.5194/angeo-29-649-2011.

    • Search Google Scholar
    • Export Citation
  • Smith, A. K., D. V. Pancheva, N. J. Mitchell, D. R. Marsh, J. M. Russell III, and M. G. Mlynczak, 2007: A link between variability of the semidiurnal tide and planetary waves in the opposite hemisphere. Geophys. Res. Lett., 34, L07809, doi:10.1029/2006GL028929.

  • Sofieva, V. F., F. Dalaudier, R. Kivi, and E. Kyroe, 2008: On the variability of temperature profiles in the stratosphere: Implications for validation. Geophys. Res. Lett., 35, L23808, doi:10.1029/2008GL035539.

    • Search Google Scholar
    • Export Citation
  • Sokolovskiy, S., C. Rocken, D. Hunt, W. Schreiner, J. Johnson, D. Masters, and S. Esterhuizen, 2006: GPS profiling of the lower troposphere from space: Inversion and demodulation of the open-loop radio occultation signals. Geophys. Res. Lett., 33, L14816, doi:10.1029/2006GL026112.

    • Search Google Scholar
    • Export Citation
  • Sokolovskiy, S., C. Rocken, W. Schreiner, and D. Hunt, 2010: On the uncertainty of radio occultation inversions in the lower troposphere. J. Geophys. Res., 115, D22111, doi:10.1029/2010JD014058.

    • Search Google Scholar
    • Export Citation
  • Steinbrecht, W., H. Claude, F. Schönenborn, U. Leiterer, H. Dier, and E. Lanzinger, 2008: Pressure and temperature differences between Vaisala RS80 and RS92 radiosonde systems. J. Atmos. Oceanic Technol., 25, 909927, doi:10.1175/2007JTECHA999.1.

    • Search Google Scholar
    • Export Citation
  • Sun, B., A. Reale, D. J. Seidel, and D. C. Hunt, 2010: Comparison radiosonde and COSMIC atmospheric profile data to quantify differences among radiosonde types and the effects of imperfect collocation on comparison statistics. J. Geophys. Res., 115, D23104, doi:10.1029/2010JD014457.

    • Search Google Scholar
    • Export Citation
  • Syndergaard, S., 1998: Modeling the impact of the Earth’s oblateness on the retrieval of temperature and pressure profiles from limb sounding. J. Atmos. Sol.-Terr. Phys., 60, 171180, doi:10.1016/S1364-6826(97)00056-4.

    • Search Google Scholar
    • Export Citation
  • Wang, B. R., X. Y. Liu, and J. K. Wang, 2013: Assessment of COSMIC radio occultation retrieval product using global radiosonde data. Atmos. Meas. Tech., 6, 10731083, doi:10.5194/amt-6-1073-2013.

    • Search Google Scholar
    • Export Citation
  • Wang, W., K. Matthes, T. Schmidt, and L. Neef, 2013: Recent variability of the tropical tropopause inversion layer. Geophys. Res. Lett., 40, 63086313, doi:10.1002/2013GL058350.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., C.-P. Chang, B. Wang, and F.-F. Jin, 2005: Teleconnection from tropics to northern extratropics through a southerly conveyor. J. Atmos. Sci., 62, 40574070, doi:10.1175/JAS3600.1.

    • Search Google Scholar
    • Export Citation
  • Wendt, V., S. Wuest, M. G. Mlynczak, J. M. Russell III, J.-H. Yee, and M. Bittner, 2013: Impact of atmospheric variability on validation of satellite-based temperature measurements. J. Atmos. Sol.-Terr. Phys., 102, 252–260, doi:10.1016/j.jastp.2013.05.022.

  • Wickert, J., and Coauthors, 2001: Atmosphere sounding by GPS radio occultation: First results from CHAMP. Geophys. Res. Lett., 28, 32633266, doi:10.1029/2001GL013117.

    • Search Google Scholar
    • Export Citation
  • Wu, D. L., P. Preusse, S. D. Eckermann, J. H. Jiang, M. de la Torre Juarez, L. Coy, and D. Y. Wang, 2006: Remote sounding of atmospheric gravity waves with satellite limb and nadir techniques. Adv. Space Res., 37, 22692277, doi:10.1016/j.asr.2005.07.031.

    • Search Google Scholar
    • Export Citation
  • Xu, J., A. K. Smith, W. Yuan, H.-L. Liu, Q. Wu, M. G. Mlynczak, and J. M. Russell III, 2007: Global structure and long-term variations of zonal mean temperature observed by TIMED/SABER. J. Geophys. Res., 112, D24106, doi:10.1029/2007JD008546.

    • Search Google Scholar
    • Export Citation
  • Zhang, K., E. Fu, D. Silcock, Y. Wang, and Y. Kuleshov, 2011: An investigation of atmospheric temperature profiles in the Australian region using collocated GPS radio occultation and radiosonde data. Atmos. Meas. Tech., 4, 20872092, doi:10.5194/amt-4-2087-2011.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 244 141 12
PDF Downloads 220 41 4