• Ackerman, B., 1985: Temporal march of the Chicago heat island. J. Climate Appl. Meteor., 24, 547554, doi:10.1175/1520-0450(1985)024<0547:TMOTCH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arnfield, A. J., 2003: Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol., 23, 126, doi:10.1002/joc.859.

    • Search Google Scholar
    • Export Citation
  • Baker, D. G., , E. L. Kuehnast, , and J. A. Zandlo, 1985: Climate of Minnesota. Part XV: Normal temperatures (1951–1980) and their application. University of Minnesota Agricultural Experiment Station Tech. Bull. AD-SB-2777-1985, 70 pp. [Available online at https://conservancy.umn.edu/bitstream/handle/11299/122927/SB566.pdf?sequence=1&isAllowed=y.]

  • Baker, D. G., , R. H. Skaggs, , and D. L. Ruschy, 1991: Snow depth required to mask the underlying surface. J. Appl. Meteor., 30, 387392, doi:10.1175/1520-0450(1991)030<0387:SDRTMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baker, L. A., , A. J. Braze, , N. Selover, , C. Martin, , N. McIntyre, , F. R. Steiner, , A. Nelson, , and L. Musacchio, 2002: Urbanization and warming of Phoenix (Arizona, USA): Impacts, feedbacks and mitigation. Urban Ecosyst., 6, 183203, doi:10.1023/A:1026101528700.

    • Search Google Scholar
    • Export Citation
  • Basara, J. B., , P. K. Hall Jr., , A. J. Schroeder, , B. G. Illston, , and K. L. Nemunaitis, 2008: Diurnal cycle of the Oklahoma City urban heat island. J. Geophys. Res., 113, D20109, doi:10.1029/2008JD010311.

    • Search Google Scholar
    • Export Citation
  • Brazel, A. J., , N. Selover, , R. Vose, , and G. Heisler, 2000: The tale of two climates—Baltimore and Phoenix urban LTER sites. Climate Res., 15, 123135, doi:10.3354/cr015123.

    • Search Google Scholar
    • Export Citation
  • Chandler, T. J., 1965: The Climate of London. Hutchinson, 292 pp.

  • Duchon, C. E., 1979: Lanczos filtering in one and two dimensions. J. Appl. Meteor., 18, 10161022, doi:10.1175/1520-0450(1979)018<1016:LFIOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Durre, I., , M. J. Menne, , B. E. Gleason, , T. G. Houston, , and R. S. Vose, 2010: Comprehensive automated quality assurance of daily surface observations. J. App. Meteor. Climatol., 49, 16151633, doi:10.1175/2010JAMC2375.1.

    • Search Google Scholar
    • Export Citation
  • Fortuniak, K., , K. Kłysik, , and J. Wibig, 2006: Urban–rural contrasts of meteorological parameters in Łódź. Theor. Appl. Climatol., 84, 91101, doi:10.1007/s00704-005-0147-y.

    • Search Google Scholar
    • Export Citation
  • Goward, S. N., 1981: Thermal behavior of urban landscapes and the urban heat island. Phys. Geography, 2, 1933.

  • Grimmond, C. S. B., 2006: Progress in measuring and observing the urban atmosphere. Theor. Appl. Climatol., 84, 322, doi:10.1007/s00704-005-0140-5.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., 2007: Urbanization and global environmental change: Local effects of urban warming. Geogr. J., 173, 8388, doi:10.1111/j.1475-4959.2007.232_3.x.

    • Search Google Scholar
    • Export Citation
  • Hage, K. D., 1972: Nocturnal temperatures in Edmonton, Alberta. J. Appl. Meteor., 11, 123129, doi:10.1175/1520-0450(1972)011<0123:NTIEA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hausfather, Z., , M. J. Menne, , C. N. Williams, , T. Masters, , R. Broberg, , and D. Jones, 2013: Quantifying the effect of urbanization on U.S. Historical Climatology Network temperature records. J. Geophys. Res. Atmos., 118, 481494, doi:10.1029/2012JD018509.

    • Search Google Scholar
    • Export Citation
  • Hawkins, T. W., , A. J. Brazel, , W. L. Stefanov, , W. Bigler, , and E. M. Saffell, 2004: The role of rural variability in urban heat island determination for Phoenix, Arizona. J. Appl. Meteor., 43, 476486, doi:10.1175/1520-0450(2004)043<0476:TRORVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hertel, W. F., 2014: A multi-city analysis of the natural and human drivers of the urban heat island. M.S. thesis, Department of Soil, Water, and Climate, University of Minnesota, 90 pp. [Available online at https://conservancy.umn.edu/bitstream/handle/11299/166776/Hertel_umn_0130M_15243.pdf?sequence=1&isAllowed=y.]

  • Ho, C. L. I., , and C. Valeo, 2005: Observations of urban snow properties in Calgary, Canada. Hydrol. Processes, 19, 459473, doi:10.1002/hyp.5544.

    • Search Google Scholar
    • Export Citation
  • Howard, L., 1833: The Climate of London. Dalton, 291 pp.

  • Ishida, T., , and S. Kawashima, 1993: Use of cokriging for air temperature. Theor. Appl. Climatol., 47, 147157, doi:10.1007/BF00867447.

    • Search Google Scholar
    • Export Citation
  • Jin, M. S., 2012: Developing an index to measure urban heat island effect using satellite land skin temperature and land cover observations. J. Climate, 25, 61936201, doi:10.1175/JCLI-D-11-00509.1.

    • Search Google Scholar
    • Export Citation
  • Jin, S., , L. Yang, , P. Danielson, , C. Homer, , J. Fry, , and G. Xian, 2013: A comprehensive change detection method for updating the National Land Cover Database to circa 2011. Remote Sens. Environ., 132, 159175, doi:10.1016/j.rse.2013.01.012.

    • Search Google Scholar
    • Export Citation
  • Journel, A. G., , and C. J. Huijbregts, 1978: Mining Geostatistics. Academic Press, 600 pp.

  • Kawashima, S., , and T. Ishida, 1992: Effects of regional temperature, wind speed and soil wetness on spatial structure of surface air temperature. Theor. Appl. Climatol., 46, 153161, doi:10.1007/BF00866095.

    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., , and J.-J. Baik, 2005: Spatial and temporal structure of the urban heat island in Seoul. J. Appl. Meteor., 44, 591605, doi:10.1175/JAM2226.1.

    • Search Google Scholar
    • Export Citation
  • Kljun, N., , M. W. Rotach, , and H. P. Schmid, 2002: A three-dimensional backward Lagrangian footprint model for a wide range of boundary-layer stratifications. Bound.-Layer Meteor., 103, 205226, doi:10.1023/A:1014556300021.

    • Search Google Scholar
    • Export Citation
  • Kłysik, K., , and K. Fortuniak, 1999: Temporal and spatial characteristics of the urban heat island of Łódź, Poland. Atmos. Environ., 33, 38853895, doi:10.1016/S1352-2310(99)00131-4.

    • Search Google Scholar
    • Export Citation
  • Kottek, M., , J. Grieser, , C. Beck, , B. Rudolf, , and F. Rubel, 2006: World map of the Köppen-Geiger climate classification updated. Meteor. Z., 15, 259263, doi:10.1127/0941-2948/2006/0130.

    • Search Google Scholar
    • Export Citation
  • Kovats, R. S., , and S. Hajat, 2008: Heat stress and public health: A critical review. Annu. Rev. Public Health, 29, 4155, doi:10.1146/annurev.publhealth.29.020907.090843.

    • Search Google Scholar
    • Export Citation
  • Lowry, W., 1977: Empirical estimation of urban effects on climate: A problem analysis. J. Appl. Meteor., 16, 129135, doi:10.1175/1520-0450(1977)016<0129:EEOUEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Malevich, S. B., , and K. Klink, 2011: Relationships between snow and the wintertime Minneapolis urban heat island. J. Appl. Meteor. Climatol., 50, 18841894, doi:10.1175/JAMC-D-11-05.1.

    • Search Google Scholar
    • Export Citation
  • Morris, C. J. G., , and I. Simmonds, 2000: Associations between varying magnitudes of the urban heat island and the synoptic climatology in Melbourne, Australia. Int. J. Climatol., 20, 19311954, doi:10.1002/1097-0088(200012)20:15<1931::AID-JOC578>3.0.CO;2-D.

    • Search Google Scholar
    • Export Citation
  • Morris, C. J. G., , I. Simmonds, , and N. Plummer, 2001: Quantification of the influences of wind and cloud on the nocturnal urban heat island of a large city. J. Appl. Meteor., 40, 169182, doi:10.1175/1520-0450(2001)040<0169:QOTIOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Muller, C. L., , L. Chapman, , C. S. B. Grimmond, , D. T. Young, , and X. Cai, 2013a: Sensors and the city: A review of urban meteorological networks. Int. J. Climatol., 33, 15851600, doi:10.1002/joc.3678.

    • Search Google Scholar
    • Export Citation
  • Muller, C. L., , L. Chapman, , C. S. B. Grimmond, , D. T. Young, , and X.-M. Cai, 2013b: Toward a standardized metadata protocol for urban meteorological networks. Bull. Amer. Meteor. Soc., 94, 11611185, doi:10.1175/BAMS-D-12-00096.1.

    • Search Google Scholar
    • Export Citation
  • Nunez, M., , and T. R. Oke, 1977: The energy balance of an urban canyon. J. Appl. Meteor., 16, 1119, doi:10.1175/1520-0450(1977)016<0011:TEBOAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1973: City size and the urban heat island. Atmos. Environ., 7, 769779, doi:10.1016/0004-6981(73)90140-6.

  • Oke, T. R., 1976: The distinction between canopy and boundary-layer urban heat islands. Atmosphere, 14, 268277.

  • Oke, T. R., 1982: The energetic basis of the urban heat island. Quart. J. Roy. Meteor. Soc., 108, 124.

  • Oke, T. R., 1995: The heat island of the urban boundary layer: Characteristics, causes, and effects. Wind Climate in Cities, J. E. Cermak et al., Eds., Kluwer Academic, 81–107.

  • Oke, T. R., 2006: Initial guidance to obtain representative meteorological observations at urban sites. World Meteorological Organization IOM Rep. 81, WMO/TD 1250, 51 pp. [Available online at https://www.wmo.int/pages/prog/www/IMOP/publications/IOM-81/IOM-81-UrbanMetObs.pdf.]

  • Overeem, A., , J. C. R. Robinson, , H. Leijnse, , G. J. Steeneveld, , B. K. P. Horn, , and R. Uijlenhoet, 2013: Crowdsourcing urban air temperatures from smartphone battery temperatures. Geophys. Res. Lett., 40, 40814085, doi:10.1002/grl.50786.

    • Search Google Scholar
    • Export Citation
  • Peng, S., and et al. , 2012: Surface urban heat island across 419 global big cities. Environ. Sci. Technol., 46, 696703, doi:10.1021/es2030438.

    • Search Google Scholar
    • Export Citation
  • Pigeon, G., , A. Lemonsu, , N. Long, , J. Barrié, , V. Masson, , and P. Durand, 2006: Urban thermodynamic island in a coastal city analysed from an optimized surface network. Bound.-Layer Meteor., 120, 315351, doi:10.1007/s10546-006-9050-z.

    • Search Google Scholar
    • Export Citation
  • Rao, P. K., 1972: Remote sensing of “urban heat islands” from an environment satellite. Bull. Amer. Meteor. Soc., 53, 647648.

  • Runnalls, K. E., , and T. R. Oke, 2000: Dynamics and controls of the near-surface heat island of Vancouver, British Columbia. Phys. Geog., 21, 283304, doi:10.1080/02723646.2000.10642711.

    • Search Google Scholar
    • Export Citation
  • Sailor, D. J., , and L. Lu, 2004: A top-down methodology for developing diurnal and seasonal anthropogenic heating profiles for urban areas. Atmos. Environ., 38, 27372748, doi:10.1016/j.atmosenv.2004.01.034.

    • Search Google Scholar
    • Export Citation
  • Santamouris, M., , N. Papanikolaou, , I. Livada, , I. Koronakis, , C. Georgakis, , A. Argiriou, , and D. N. Assimakopoulos, 2001: On the impact of urban climate on the energy consumption of buildings. Sol. Energy, 70, 201216, doi:10.1016/S0038-092X(00)00095-5.

    • Search Google Scholar
    • Export Citation
  • Schatz, J., , and C. J. Kucharik, 2014: Seasonality of the urban heat island effect in Madison, Wisconsin. J. Appl. Meteor. Climatol., 53, 23712386, doi:10.1175/JAMC-D-14-0107.1.

    • Search Google Scholar
    • Export Citation
  • Stewart, I. D., 2011: A systematic review and scientific critique of methodology in modern urban heat island literature. Int. J. Climatol., 31, 200217, doi:10.1002/joc.2141.

    • Search Google Scholar
    • Export Citation
  • Stewart, I. D., , and T. R. Oke, 2012: Local climate zones for urban temperature studies. Bull. Amer. Meteor. Soc., 93, 18791900, doi:10.1175/BAMS-D-11-00019.1.

    • Search Google Scholar
    • Export Citation
  • Stone, B., 2005: Urban heat and air pollution: An emerging role for planners in the climate change debate. J. Amer. Plann. Assoc., 71, 1325, doi:10.1080/01944360508976402.

    • Search Google Scholar
    • Export Citation
  • Todhunter, P. E., 1996: Environmental indices for the Twin Cities Metropolitan Area (Minnesota, USA) urban heat island—1989. Climate Res., 6, 5969, doi:10.3354/cr006059.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., 1996: Observed climatic variability: Spatial structure. Decadal Climate Variability: Dynamics and Predictability, D. L. T. Anderson and J. Willebrand, Eds., Springer, 31–81.

  • Warren, S. G., 1982: Optical properties of snow. Rev. Geophys., 20, 6789, doi:10.1029/RG020i001p00067.

  • Winkler, J. A., , R. H. Skaggs, , and D. G. Baker, 1981: Effect of temperature adjustments on the Minneapolis-St. Paul urban heat island. J. Appl. Meteor., 20, 12951300, doi:10.1175/1520-0450(1981)020<1295:EOTAOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • World Meteorological Organization, 2008: Guide to meteorological instruments and methods of observation. 7th ed. Instruments and Observing Methods Rep. 8, 681 pp. [Available online at https://www.wmo.int/pages/prog/gcos/documents/gruanmanuals/CIMO/CIMO_Guide-7th_Edition-2008.pdf.]

  • Wu, H., , K. G. Hubbard, , and J. You, 2005: Some concerns when using data from the cooperative weather station networks: A Nebraska case study. J. Atmos. Oceanic Technol., 22, 592602, doi:10.1175/JTECH1733.1.

    • Search Google Scholar
    • Export Citation
  • Yow, D. M., 2007: Urban heat islands: Observations, impacts, and adaptation. Geogr. Compass, 1, 12271251, doi:10.1111/j.1749-8198.2007.00063.x.

    • Search Google Scholar
    • Export Citation
  • Yuan, F., , and M. E. Bauer, 2007: Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sens. Environ., 106, 375386, doi:10.1016/j.rse.2006.09.003.

    • Search Google Scholar
    • Export Citation
  • Zhang, K., , E. M. Oswald, , D. G. Brown, , S. J. Brines, , C. J. Gronlund, , J. L. White-Newsome, , R. B. Rood, , and M. S. O’Neill, 2011: Geostatistical exploration of spatial variation of summertime temperatures in the Detroit metropolitan region. Environ. Res., 111, 10461053, doi:10.1016/j.envres.2011.08.012.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 576 576 54
PDF Downloads 342 342 55

Dense Network Observations of the Twin Cities Canopy-Layer Urban Heat Island

View More View Less
  • 1 Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

Data from a dense urban meteorological network (UMN) are analyzed, revealing the spatial heterogeneity and temporal variability of the Twin Cities (Minneapolis–St. Paul, Minnesota) canopy-layer urban heat island (UHI). Data from individual sensors represent surface air temperature (SAT) across a variety of local climate zones within a 5000-km2 area and span the 3-yr period from 1 August 2011 to 1 August 2014. Irregularly spaced data are interpolated to a uniform 1 km × 1 km grid using two statistical methods: 1) kriging and 2) cokriging with impervious surface area data. The cokriged SAT field exhibits lower bias and lower RMSE than does the kriged SAT field when evaluated against an independent set of observations. Maps, time series, and statistics that are based on the cokriged field are presented to describe the spatial structure and magnitude of the Twin Cities metropolitan area (TCMA) UHI on hourly, daily, and seasonal time scales. The average diurnal variation of the TCMA UHI exhibits distinct seasonal modulation wherein the daily maximum occurs by night during summer and by day during winter. Daily variations in the UHI magnitude are linked to changes in weather patterns. Seasonal variations in the UHI magnitude are discussed in terms of land–atmosphere interactions. To the extent that they more fully resolve the spatial structure of the UHI, dense UMNs are advantageous relative to limited collections of existing urban meteorological observations. Dense UMNs are thus capable of providing valuable information for UHI monitoring and for implementing and evaluating UHI mitigation efforts.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-14-0239.s1.

Current affiliation: The Climate Corporation, Seattle, Washington.

Corresponding author address: Peter K. Snyder, Dept. of Soil, Water, and Climate, University of Minnesota, 439 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN 55108. E-mail: pksnyder@umn.edu

Abstract

Data from a dense urban meteorological network (UMN) are analyzed, revealing the spatial heterogeneity and temporal variability of the Twin Cities (Minneapolis–St. Paul, Minnesota) canopy-layer urban heat island (UHI). Data from individual sensors represent surface air temperature (SAT) across a variety of local climate zones within a 5000-km2 area and span the 3-yr period from 1 August 2011 to 1 August 2014. Irregularly spaced data are interpolated to a uniform 1 km × 1 km grid using two statistical methods: 1) kriging and 2) cokriging with impervious surface area data. The cokriged SAT field exhibits lower bias and lower RMSE than does the kriged SAT field when evaluated against an independent set of observations. Maps, time series, and statistics that are based on the cokriged field are presented to describe the spatial structure and magnitude of the Twin Cities metropolitan area (TCMA) UHI on hourly, daily, and seasonal time scales. The average diurnal variation of the TCMA UHI exhibits distinct seasonal modulation wherein the daily maximum occurs by night during summer and by day during winter. Daily variations in the UHI magnitude are linked to changes in weather patterns. Seasonal variations in the UHI magnitude are discussed in terms of land–atmosphere interactions. To the extent that they more fully resolve the spatial structure of the UHI, dense UMNs are advantageous relative to limited collections of existing urban meteorological observations. Dense UMNs are thus capable of providing valuable information for UHI monitoring and for implementing and evaluating UHI mitigation efforts.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-14-0239.s1.

Current affiliation: The Climate Corporation, Seattle, Washington.

Corresponding author address: Peter K. Snyder, Dept. of Soil, Water, and Climate, University of Minnesota, 439 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, MN 55108. E-mail: pksnyder@umn.edu
Save