Hodographs of Slowly Rotating Winds in Midlatitudes

Volodymyr Y. Korolevych Canadian Nuclear Laboratories, Chalk River, Ontario, Canada

Search for other papers by Volodymyr Y. Korolevych in
Current site
Google Scholar
PubMed
Close
and
Richard B. Richardson Canadian Nuclear Laboratories, Chalk River, Ontario, Canada

Search for other papers by Richard B. Richardson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Trend analysis of hourly wind direction angle recorded at nine meteorological stations across southern Canada (in the 43°–53°N belt) identified wind direction rotation periods in the range of 7–9 days. Rotation persists during the “summertime” season from May to mid-October during 1953–2001. Rotation with a 7.5-day period was also established in the 850-hPa geostrophic summertime wind over the Canadian province of Saskatchewan in 2000. Hodographs built from wind vectors corresponding to consecutive days of the 7.5-day period (summertime average vectors of winds binned into separate days of the period) formed nearly elliptical loops centered around the end point of the net westerly transport vector that ranged from 0.5 to 1.3 m s−1 and was either smaller than or of comparable magnitude to the zonal and meridional oscillations of wind. The observed rotations appear quasi periodic rather than purely periodic, because nearly elliptical loops of relatively large amplitude were present at different hodographs constructed at each location for sampling periods of 6.5, 7.0, 7.5, and 8.0 days. For sampling periods outside the ~6.5–8.0-day range, the rotational magnitude in a hodograph appears diminished because of partial cancellation of wind vectors in corresponding hodograph bins. Quasi-periodical rotation occurs in the clockwise direction.

Corresponding author address: Volodymyr Korolevych, Stn. 51A, Chalk River Laboratories, Chalk River ON K0J 1J0, Canada. E-mail: vlad.korolevych@cnl.ca

Abstract

Trend analysis of hourly wind direction angle recorded at nine meteorological stations across southern Canada (in the 43°–53°N belt) identified wind direction rotation periods in the range of 7–9 days. Rotation persists during the “summertime” season from May to mid-October during 1953–2001. Rotation with a 7.5-day period was also established in the 850-hPa geostrophic summertime wind over the Canadian province of Saskatchewan in 2000. Hodographs built from wind vectors corresponding to consecutive days of the 7.5-day period (summertime average vectors of winds binned into separate days of the period) formed nearly elliptical loops centered around the end point of the net westerly transport vector that ranged from 0.5 to 1.3 m s−1 and was either smaller than or of comparable magnitude to the zonal and meridional oscillations of wind. The observed rotations appear quasi periodic rather than purely periodic, because nearly elliptical loops of relatively large amplitude were present at different hodographs constructed at each location for sampling periods of 6.5, 7.0, 7.5, and 8.0 days. For sampling periods outside the ~6.5–8.0-day range, the rotational magnitude in a hodograph appears diminished because of partial cancellation of wind vectors in corresponding hodograph bins. Quasi-periodical rotation occurs in the clockwise direction.

Corresponding author address: Volodymyr Korolevych, Stn. 51A, Chalk River Laboratories, Chalk River ON K0J 1J0, Canada. E-mail: vlad.korolevych@cnl.ca
Save
  • Alpert, P., M. Kusuda, and N. Abe, 1984: Anticlockwise rotation, eccentricity and tilt angle of the wind hodograph. Part II: An observational study. J. Atmos. Sci., 41, 35683583, doi:10.1175/1520-0469(1984)041<3568:AREATA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Atmospheric Environment Service, 1982: Canadian climate normals 1951–1980, Volume 5: Wind. Canada Department of the Environment, accessed 20 March 2014. [Available online at http://www.climate.weatheroffice.gc.ca/climateData/canada_e.html.]

  • Barat, J., and C. Cot, 1992: Wind shear rotary spectra in the atmosphere. Geophys. Res. Lett., 19, 103106, doi:10.1029/92GL00044.

  • Bell, T. L., D. Rosenfeld, and K.-M. Kim, 2009: Weekly cycle of lightning: Evidence of storm invigoration by pollution. Geophys. Res. Lett., 36, L23805, doi:10.1029/2009GL040915.

    • Search Google Scholar
    • Export Citation
  • Benzi, R., and A. Speranza, 1989: Statistical properties of low-frequency variability in the Northern Hemisphere. J. Climate, 2, 367379, doi:10.1175/1520-0442(1989)002<0367:SPOLFV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Benzi, R., P. Malguzzi, A. Speranza, and A. Sutera, 1986: The statistical properties of general atmospheric circulation: Observational evidence and a minimal theory of bimodality. Quart. J. Roy. Meteor. Soc., 112, 661674, doi:10.1002/qj.49711247306.

    • Search Google Scholar
    • Export Citation
  • Carrera, M. L., J. R. Gyakum, and C. A. Lin, 2009: Observational study of wind channeling within the St. Lawrence River valley. J. Appl. Meteor. Climatol., 48, 2341–2361, doi:10.1175/2009JAMC2061.1.

  • Chambers, F., 1873: The diurnal variations of the wind and barometric pressure at Bombay. Philos. Trans. Roy. Soc., 163, 118, doi:10.1098/rstl.1873.0001.

    • Search Google Scholar
    • Export Citation
  • Daniel, J. S., R. W., Portmann, S., Solomon, and D. M. Murphy, 2012: Identifying weekly cycles in meteorological variables: The importance of an appropriate statistical analysis. J. Geophys. Res. Atmos., 117, D13203, doi:10.1029/2012JD017574.

  • Dell’Aquila, A., V. Lucarini, P. M. Ruti, and S. Calmanti, 2005: Hayashi spectra of the Northern Hemisphere mid-latitude atmospheric variability in the NCEP–NCAR and ECMWF reanalyses. Climate Dyn., 25, 639652, doi:10.1007/s00382-005-0048-x.

    • Search Google Scholar
    • Export Citation
  • Emery, W. J., and R. E. Thomson, 2001: Statistical methods and error handling. Data Analysis Methods in Physical Oceanography. Elsevier, 193–304.

  • Environment Canada, 2007: CDCD—Canadian Daily Climate Data, 2 vols. Accessed 10 December 2012. [Available online at ftp://arcdm20.tor.ec.gc.ca/pub/dist/CDCD/CDCD_DCQC_2007.zip.]

  • Environment Canada, 2008: CWEEDS—Canadian Weather Energy and Engineering Data Set. Environment Canada, Meteorological Service of Canada, and National Research Council, accessed 10 December 2012. [Available online at ftp://arcdm20.tor.ec.gc.ca/pub/dist/climate/CWEEDS_2005.]

  • Fernandes, R., V. Korolevych, and S. Wang, 2007: Trends in land evapotranspiration over Canada for the period 1960–2000 based on in situ climate observations and a land surface model. J. Hydrometeor., 8, 10161030, doi:10.1175/JHM619.1.

    • Search Google Scholar
    • Export Citation
  • Furberg, M., D. G. Steyn, and M. Baldi, 2002: The climatology of sea breezes on Sardinia. Int. J. Climatol., 22, 917932, doi:10.1002/joc.780.

    • Search Google Scholar
    • Export Citation
  • Georgoulias, A. K., and K. A. Kourtidis, 2011: On the aerosol weekly cycle spatiotemporal variability over Europe. Atmos. Chem. Phys., 11, 46114632, doi:10.5194/acp-11-4611-2011.

    • Search Google Scholar
    • Export Citation
  • Gille, S. T., S. G. Llewellyn Smith, and S. M. Lee, 2003: Measuring the sea breeze from QuikSCAT scatterometry. Geophys. Res. Lett., 30, 1114, doi:10.1029/2002GL016230.

    • Search Google Scholar
    • Export Citation
  • Gonella, J., 1972: A rotary-component method for analysing meteorological and oceanographic vector time series. Deep-Sea Res., 19, 833846, doi:10.1016/0011-7471(72)90002-2.

    • Search Google Scholar
    • Export Citation
  • Hamilton, K., 1987: General circulation model simulation of the structure and energetic of atmospheric models. Tellus, 39A, 435459, doi:10.1111/j.1600-0870.1987.tb00320.x.

    • Search Google Scholar
    • Export Citation
  • Haurwitz, B., 1947: Comments on the sea-breeze circulation. J. Meteor., 4, 18, doi:10.1175/1520-0469(1947)004<0001:COTSBC>2.0.CO;2.

  • Hodges, K. I., B. J. Hoskins, J. Boyle, and C. Thorncroft, 2003: A comparison of recent reanalysis datasets using objective feature tracking: Storm tracks and tropical easterly waves. Mon. Wea. Rev., 131, 20122037, doi:10.1175/1520-0493(2003)131<2012:ACORRD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Keeler, J. M., and D. A. R. Kristovich, 2012: Observations of urban heat island influence on lake-breeze frontal movement. J. Appl. Meteor. Climatol., 51, 702710, doi:10.1175/JAMC-D-11-0166.1.

    • Search Google Scholar
    • Export Citation
  • Kim, K. Y., R. J. Park, K. R. Kim, and H. Na, 2010: Weekend effect: Anthropogenic or natural? Geophys. Res. Lett., 37, L09808, doi:10.1029/2010GL043233.

    • Search Google Scholar
    • Export Citation
  • Korolevych, V. Y., and R. B. Richardson, 2012: Low-frequency rotation of surface winds over Canada. Atmosphere, 3, 522536, doi:10.3390/atmos3040522.

    • Search Google Scholar
    • Export Citation
  • Kuo, A. C., and L. M. Polvani, 2000: Nonlinear geostrophic adjustment, cyclone/anticyclone asymmetry, and potential vorticity rearrangement. Phys. Fluids, 12, 10871100, doi:10.1063/1.870363.

    • Search Google Scholar
    • Export Citation
  • Kusuda, M., and P. Alpert, 1983: Anticlockwise rotation of the wind hodograph. Part I: Theoretical study. J. Atmos. Sci., 40, 487499, doi:10.1175/1520-0469(1983)040<0487:ACROTW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., A. H. Manson, C. E. Meek, C. K. Meyer, and J. M. Forbes, 2000: The quasi 16-day oscillations in the mesosphere and lower thermosphere at Saskatoon (52°N, 107°W), 1980–1996. J. Geophys. Res., 105, 21252138, doi:10.1029/1999JD900979.

    • Search Google Scholar
    • Export Citation
  • Luo, Y., and Coauthors, 2002: The 16-day planetary waves: Multi-MF radar observations from the arctic to equator and comparisons with the HRDI measurements and the GSWM modelling results. Ann. Geophys., 20, 691709, doi:10.5194/angeo-20-691-2002.

    • Search Google Scholar
    • Export Citation
  • Lyons, W. A., 1972: The climatology and prediction of the Chicago lake breeze. J. Appl. Meteor., 11, 12591270, doi:10.1175/1520-0450(1972)011<1259:TCAPOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Madden, R. A., 2007: Large-scale, free Rossby waves in the atmosphere—An update. Tellus, 59A, 571590, doi:10.1111/j.1600-0870.2007.00257.x.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • NCDC, 2008: Data documentation for data set 3505 (DSI-3505). National Climatic Data Center, 118 pp.

  • Neumann, J., 1977: On the rotation rate of the direction of sea and land breezes. J. Atmos. Sci., 34, 19131917, doi:10.1175/1520-0469(1977)034<1913:OTRROT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sakazaki, T., and M. Fujiwara, 2008: Diurnal variations in summertime surface wind upon Japanese plains: Hodograph rotation and its dynamics. J. Meteor. Soc. Japan, 86, 787803, doi:10.2151/jmsj.86.787.

    • Search Google Scholar
    • Export Citation
  • Sanchez-Lorenzo, A., P. Laux, H. J. Hendricks Franssen, J. Calbó, S. Vogl, A. K. Georgoulias, and J. Quaas, 2012: Assessing large-scale weekly cycles in meteorological variables: A review. Atmos. Chem. Phys., 12, 57555771, doi:10.5194/acp-12-5755-2012.

    • Search Google Scholar
    • Export Citation
  • Shipton, J., 2009: Balance, gravity waves and jets in turbulent shallow water flows. Ph.D. thesis, University of Saint Andrews, 148 pp.

  • Sterk, A. E., R. Vitolo, H. W. Broer, C. Simo, and H. A. Dijkstra, 2010: New nonlinear mechanisms of midlatitude atmospheric low-frequency variability. Physica D, 239, 702718, doi:10.1016/j.physd.2010.02.003.

    • Search Google Scholar
    • Export Citation
  • Wagner, N. L., and Coauthors, 2012: The sea breeze/land breeze circulation in Los Angeles and its influence on nitryl chloride production in this region. J. Geophys. Res. Atmos., 117, D00V24, doi:10.1029/2012JD017810.

  • Wallace, J. M., G. H. Lim, and M. L. Blackmon, 1988: Relationship between cyclone tracks, anticyclone tracks and baroclinic waveguides. J. Atmos. Sci., 45, 439462, doi:10.1175/1520-0469(1988)045<0439:RBCTAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Williams, C. R., and Avery, S. K. 1992: Analysis of long-period waves using the mesosphere-stratosphere-troposphere radar at Poker Flat, Alaska. J. Geophys. Res. Atmos., 97, 20 855–20 861, doi:10.1029/92JD02052.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 179 57 3
PDF Downloads 102 28 2