• Ashley, W. S., , and A. W. Black, 2008: Fatalities associated with nonconvective high-wind events in the United States. J. Appl. Meteor. Climatol., 47, 717725, doi:10.1175/2007JAMC1689.1.

    • Search Google Scholar
    • Export Citation
  • Asuma, J. V., 2010: Cool-season high-wind events in the Northeast U.S. M.S. thesis, Dept. of Atmospheric and Environmental Sciences, University at Albany, State University of New York, 117 pp. [Available online at http://cstar.cestm.albany.edu/CAP_Projects/Project17/JAsuma/Asuma_Total_4Oct10_Final.pdf.]

  • Bauer, M., , and A. D. Del Genio, 2006: Composite analysis of winter cyclones in a GCM: Influence on climatological humidity. J. Climate, 19, 16521672, doi:10.1175/JCLI3690.1.

    • Search Google Scholar
    • Export Citation
  • Bengtsson, L., , K. I. Hodges, , and N. Keenlyside, 2009: Will extratropical storms intensify in a warmer climate? J. Climate, 22, 22762301, doi:10.1175/2008JCLI2678.1.

    • Search Google Scholar
    • Export Citation
  • Bernhardt, J. E., , and A. T. DeGaetano, 2012: Meteorological factors affecting the speed of movement and related impacts of extratropical cyclones along the U.S. East Coast. Nat. Hazards, 61, 14631472, doi:10.1007/s11069-011-0078-0.

    • Search Google Scholar
    • Export Citation
  • Booth, J. F., , L. Thompson, , J. Patoux, , K. A. Kelly, , and S. Dickinson, 2010: The signature of the midlatitude tropospheric storm tracks in the surface winds. J. Climate, 23, 11601174, doi:10.1175/2009JCLI3064.1.

    • Search Google Scholar
    • Export Citation
  • Booth, J. F., , C. Naud, , and A. D. Del Genio, 2013: Diagnosing warm frontal cloud formation in a GCM: A novel approach using conditional subsetting. J. Climate, 26, 58275845, doi:10.1175/JCLI-D-12-00637.1.

    • Search Google Scholar
    • Export Citation
  • Born, K., , P. L. Ludwig, , and J. G. Pinto, 2012: Wind gust estimation for mid-European winter storms: Towards a probabilistic view. Tellus, 64A, 17471, doi:10.3402/tellusa.v64i0.17471.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., 2004: The sting at the end of the tail: Damaging winds associated with extratropical cyclones. Quart. J. Roy. Meteor. Soc., 130, 375399, doi:10.1256/qj.02.143.

    • Search Google Scholar
    • Export Citation
  • Casola, J. H., , and J. M. Wallace, 2007: Identifying weather regimes in the 500-hPa geopotential height field for the Pacific–North American sector using a limited-contour clustering technique. J. Appl. Meteor. Climatol., 46, 16191630, doi:10.1175/JAM2564.1.

    • Search Google Scholar
    • Export Citation
  • Catto, J. L., , L. C. Shaffrey, , and K. I. Hodges, 2010: Can climate models capture the structure of extratropical cyclones? J. Climate, 23, 16211635, doi:10.1175/2009JCLI3318.1.

    • Search Google Scholar
    • Export Citation
  • Coles, S., 2001: An Introduction to Statistical Modeling of Extreme Values. Springer, 209 pp.

  • Coles, S., , and L. Pericchi, 2003: Anticipating catastrophes through extreme value modelling. J. Roy. Stat. Soc., 52C, 405416, doi:10.1111/1467-9876.00413.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., , Z. Zhang, , K. A. Lombardo, , E. Chang, , P. Liu, , and M. Zhang, 2013: Historical evaluation and future prediction of eastern North American and western Atlantic extratropical cyclones in the CMIP5 models during the cool season. J. Climate. 26, 68826903, doi:10.1175/JCLI-D-12-00498.1.

    • Search Google Scholar
    • Export Citation
  • Davison, A. C., , and R. L. Smith, 1990: Models for exceedances over high thresholds (with discussion). J. Roy. Stat. Soc., 52B, 393442.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and et al. , 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Della-Marta, P. M., , and J. G. Pinto, 2009: Statistical uncertainty of changes in winter storms over the North Atlantic and Europe in an ensemble of transient climate simulations. Geophys. Res. Lett., 36, L14703, doi:10.1029/2009GL038557.

    • Search Google Scholar
    • Export Citation
  • Dolan, R., , and R. Davis, 1992: An intensity scale for Atlantic coast northeast storms. J. Coastal Res., 8, 840853.

  • Donat, M. G., , G. C. Leckebusch, , J. G. Pinto, , and U. Ulbrich, 2010: Examination of wind storms over central Europe with respect to circulation weather types and NAO phases. Int. J. Climatol., 30, 12891300, doi:10.1002/joc.1982.

    • Search Google Scholar
    • Export Citation
  • Durkee, J. D., , C. F. Fuhrmann, , J. A. Knox, , and J. D. Frye, 2012: Ageostrophic contributions to a non-convective high wind event in the Great Lakes region. Natl. Wea. Dig., 36, 2841.

    • Search Google Scholar
    • Export Citation
  • Fink, A. H., , T. Brucher, , V. Ermert, , A. Kruger, , and J. G. Pinto, 2009: The European storm Kyrill in January 2007: Synoptic evolution, meteorological impacts and some considerations with respect to climate change. Nat. Hazards Earth Syst. Sci., 9, 405423, doi:10.5194/nhess-9-405-2009.

    • Search Google Scholar
    • Export Citation
  • Gatzen, C., , T. Púčik, , and D. Ryva, 2011: Two cold-season derechoes in Europe. Atmos. Res., 100, 740748, doi:10.1016/j.atmosres.2010.11.015.

    • Search Google Scholar
    • Export Citation
  • Haas, R., , and J. G. Pinto, 2012: A combined statistical and dynamical approach for downscaling large-scale footprints of European windstorms. Geophys. Res. Lett., 39, L23804, doi:10.1029/2012GL054014.

    • Search Google Scholar
    • Export Citation
  • Hayes, J. C., , and S. C. Kuhl, 1995: An initial comparison of manual and automated surface observing system observations at the Atlantic City, New Jersey International Airport, NOAA Tech. Memo. NWS ER-89, 26 pp. [Available online at http://docs.lib.noaa.gov/noaa_documents/NWS/NWS_ER/TM_NWS_ER_89.pdf.]

  • He, Y., , A. H. Monahan, , C. G. Jones, , A. Dai, , S. Biner, , D. Caya, , and K. Winger, 2010: Probability distributions of land surface wind speeds over North America. J. Geophys. Res., 115, D04103, doi:10.1029/2008JD010708.

    • Search Google Scholar
    • Export Citation
  • Hirsch, M., , A. T. DeGaetano, , and S. J. Colucci, 2001: An East Coast winter storm climatology. J. Climate, 14, 882899, doi:10.1175/1520-0442(2001)014<0882:AECWSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., 1999: Adaptive constraints for feature tracking. Mon. Wea. Rev., 127, 13621373, doi:10.1175/1520-0493(1999)127<1362:ACFFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hodges, K. I., , R. W. Lee, , and L. Bengtsson, 2011: A comparison of extratropical cyclones in recent reanalyses ERA-Interim, NASA MERRA, NCEP CFSR, and JRA-25. J. Climate, 24, 48884906, doi:10.1175/2011JCLI4097.1.

    • Search Google Scholar
    • Export Citation
  • Iacopelli, A. J., , and J. A. Knox, 2001: Mesoscale dynamics of the record-breaking 10 November 1998 mid-latitude cyclone: A satellite-based case study. Natl. Wea. Dig., 25, 3342.

    • Search Google Scholar
    • Export Citation
  • Knippertz, P., , U. Ulbrich, , and P. Speth, 2000: Changing cyclones and surface wind speeds over the North Atlantic and Europe in a transient GHG experiment. Clim. Res., 15, 109122, doi:10.3354/cr015109.

    • Search Google Scholar
    • Export Citation
  • Knox, J. A., , J. D. Frye, , J. D. Durkee, , and C. M. Fuhrmann, 2011: Non-convective high winds associated with extratropical cyclones. Geogr. Compass, 5, 6389, doi:10.1111/j.1749-8198.2010.00395.x.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., , D. R. Easterling, , D. A. R. Kristovich, , B. Gleason, , L. Stoecker, , and R. Smith, 2012: Meteorological causes of the secular variations in observed extreme precipitation events for the conterminous United States. J. Hydrometeor., 13, 11311141, doi:10.1175/JHM-D-11-0108.1.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., and et al. , 2013: Monitoring and understanding trends in extreme storms: State of knowledge. Bull. Amer. Meteor. Soc., 94, 499514, doi:10.1175/BAMS-D-11-00262.1.

    • Search Google Scholar
    • Export Citation
  • Lacke, M. C., , J. A. Knox, , J. D. Frye, , A. E. Stewart, , J. D. Durkee, , C. M. Fuhrmann, , and S. M. Dillingham, 2007: A climatology of cold-season nonconvective wind events in the Great Lakes region. J. Climate, 20, 60126022, doi:10.1175/2007JCLI1750.1.

    • Search Google Scholar
    • Export Citation
  • Leckebusch, G. C., , D. Renggli, , and U. Ulbrich, 2008: Development and application of an objective storm severity measure for the northeast Atlantic region. Meteor. Z., 17, 575587, doi:10.1127/0941-2948/2008/0323.

    • Search Google Scholar
    • Export Citation
  • Ludwig, P., , J. G. Pinto, , S. A. Hoepp, , A. H. Fink, , and S. L. Gray, 2015: Secondary cyclogenesis along an occluded front leading to damaging wind gusts: Windstorm Kyrill, January 2007. Mon. Wea. Rev., 143, 14171437, doi:10.1175/MWR-D-14-00304.1.

    • Search Google Scholar
    • Export Citation
  • McKee, T. B., , N. J. Doesken, , C. A. Davey, , and R. A. Pielke Sr., 2000: Climate data continuity with ASOS: Report for period April 1996 through June 2000. Colorado Climate Center Climatology Rep. 00-3, 82 pp.

  • Miller, J. E., 1946: Cyclogenesis in the Atlantic coastal region of the United States. J. Meteor., 3, 3144, doi:10.1175/1520-0469(1946)003<0031:CITACR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Neu, U., and et al. , 2013: IMILAST: A community effort to intercompare extratropical cyclone detection and tracking algorithms. Bull. Amer. Meteor. Soc., 94, 529547, doi:10.1175/BAMS-D-11-00154.1.

    • Search Google Scholar
    • Export Citation
  • Nissen, K. M., , G. C. Leckebusch, , J. G. Pinto, , D. Renggli, , S. Ulbrich, , and U. Ulbrich, 2010: Cyclones causing wind storms in the Mediterranean: Characteristics, trends and links to large-scale patterns. Nat. Hazards Earth Syst. Sci., 10, 13791391, doi:10.5194/nhess-10-1379-2010.

    • Search Google Scholar
    • Export Citation
  • Niziol, T. A., , and T. J. Paone, 2000: A climatology of non-convective high wind events in western New York state. NOAA Tech. Memo. NWS ER-91, 36 pp. [Available online at http://www.erh.noaa.gov/er/hq/ssd/erps/tm/tm91.pdf.]

    • Search Google Scholar
    • Export Citation
  • Pfahl, S., 2014: Characterising the relationship between weather extremes in Europe and synoptic circulation features. Nat. Hazards Earth Syst. Sci., 14, 14611475, doi:10.5194/nhess-14-1461-2014.

    • Search Google Scholar
    • Export Citation
  • Pickands, J., 1975: Statistical-inference using extreme order statistics. Ann. Stat., 3, 119131, doi:10.1214/aos/1176343003.

  • Pinto, J. G., , E. L. Fröhlich, , G. C. Leckebusch, , and U. Ulbrich, 2007: Changing European storm loss potentials under modified climate conditions according to ensemble simulations of the ECHAM5/MPI-OM1 GCM. Nat. Hazards Earth Syst. Sci., 7, 165175, doi:10.5194/nhess-7-165-2007.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. G., , M. K. Karreman, , K. Born, , P. M. Della-Marta, , and M. Klawa, 2012: Loss potentials associated with European windstorms under future climate conditions. Climate Res., 54, 120, doi:10.3354/cr01111.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., and et al. , 2009: Wind speed trends over the contiguous United States. J. Geophys. Res., 114, D14105, doi:10.1029/2008JD011416.

    • Search Google Scholar
    • Export Citation
  • Pryor, S. C., , R. Conrick, , C. Miller, , J. Tytell, , and R. J. Barthelmie, 2014: Intense and extreme wind speeds observed by anemometer and seismic networks: An eastern U.S. case study. J. Appl. Meteor. Climatol., 53, 24172429, doi:10.1175/JAMC-D-14-0091.1.

    • Search Google Scholar
    • Export Citation
  • Reitan, C. H., 1974: Frequencies of cyclones and cyclogenesis for North America, 1951–1970. Mon. Wea. Rev., 102, 861868, doi:10.1175/1520-0493(1974)102<0861:FOCACF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ribatet, M., 2007: POT: Modelling peaks over a threshold. R News, No. 7(1), 3436. [Available online at http://cran.r-project.org/doc/Rnews/Rnews_2007-1.pdf.]

    • Search Google Scholar
    • Export Citation
  • Roberts, J. F., and et al. , 2014: The XWS open access catalogue of extreme European windstorms from 1979 to 2012. Nat. Hazards Earth Syst. Sci., 14, 24872501, doi:10.5194/nhess-14-2487-2014.

    • Search Google Scholar
    • Export Citation
  • Schwierz, C., , P. Köllner-Heck, , E. Zenklusen Mutter, , D. N. Bresch, , P.-L. Vidale, , M. Wild, , and C. Schär, 2010: Modelling European winter wind storm losses in current and future climate. Climatic Change, 101, 485514, doi:10.1007/s10584-009-9712-1.

    • Search Google Scholar
    • Export Citation
  • Seregina, L. S., , R. Haas, , K. Born, , and J. G. Pinto, 2014: Development of a wind gust model to estimate gust speeds and their return periods. Tellus, 66A, 22905, doi:10.3402/tellusa.v66.22905.

    • Search Google Scholar
    • Export Citation
  • Smith, A., , N. Lott, , and R. Vose, 2011: The integrated surface database: Recent developments and partnerships. Bull. Amer. Meteor. Soc., 92, 704708, doi:10.1175/2011BAMS3015.1.

    • Search Google Scholar
    • Export Citation
  • Ulbrich, U., , A. H. Fink, , M. Klawa, , and J. G. Pinto, 2001: Three extreme storms over Europe in December 1999. Weather, 56, 7080, doi:10.1002/j.1477-8696.2001.tb06540.x.

    • Search Google Scholar
    • Export Citation
  • Vose, R. S., and et al. , 2014: Monitoring and understanding changes in extremes: Extratropical storms, winds, and waves. Bull. Amer. Meteor. Soc., 95, 377386, doi:10.1175/BAMS-D-12-00162.1.

    • Search Google Scholar
    • Export Citation
  • Ward, J. H., Jr., 1963: Hierarchical grouping to optimize an objective function. J. Amer. Stat. Assoc., 58, 236244, doi:10.1080/01621459.1963.10500845.

    • Search Google Scholar
    • Export Citation
  • Yarnal, B., 1993: Synoptic Climatology in Environmental Analysis: A Primer. Belhaven Press, 105 pp.

All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 182 182 23
PDF Downloads 111 111 13

The Paths of Extratropical Cyclones Associated with Wintertime High-Wind Events in the Northeastern United States

View More View Less
  • 1 Department of Earth and Atmospheric Sciences, City College of New York, New York, New York
  • | 2 Wegener Center for Climate and Global Change, and Institute for Geophysics, Astrophysics and Meteorology/Institute of Physics, University of Graz, Graz, Austria, and Lamont–Doherty Earth Observatory, Columbia University, New York, New York
  • | 3 Lamont–Doherty Earth Observatory, Columbia University, New York, New York
© Get Permissions Rent on DeepDyve
Restricted access

Abstract

This study analyzes the association between wintertime high-wind events (HWEs) in the northeastern United States and extratropical cyclones. Sustained wind maxima in the daily summary data from the National Climatic Data Center’s integrated surface database are analyzed for 1979–2012. For each station, a generalized Pareto distribution is fit to the upper tail of the daily maximum wind speed data, and probabilistic return levels at 1, 3, and 5 yr are derived. Wind events meeting the return-level criteria are termed HWEs. The HWEs occurring on the same day are grouped into simultaneous wind exceedance dates, termed multistation events. In a separate analysis, extratropical cyclones are tracked using ERA-Interim. The multistation events are associated with the extratropical cyclone tracks on the basis of cyclone proximity on the day of the event. The multistation wind events are found to be most often associated with cyclones traveling from southwest to northeast, originating west of the Appalachian Mountains. To quantify the relative frequency of the strong-wind-associated cyclones, the full set of northeastern cyclone tracks is separated on the basis of path, using a crosshairs algorithm designed for this region. The tracks separate into an evenly distributed set of four pathways approaching the northeastern United States: from due west, from the southwest, and from the southeast and storms starting off the coast north of the Carolinas. Using the frequency of the tracks in each of the pathways, it is shown that the storms associated with multistation wind events are most likely to approach the northeastern United States from the southwest.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-14-0320.s1.

Corresponding author address: J. F. Booth, 160 Convent Avenue, Marshak Science Building, Room 106, City College of New York, New York, NY 10031-9101. E-mail: jbooth@ccny.cuny.edu

Abstract

This study analyzes the association between wintertime high-wind events (HWEs) in the northeastern United States and extratropical cyclones. Sustained wind maxima in the daily summary data from the National Climatic Data Center’s integrated surface database are analyzed for 1979–2012. For each station, a generalized Pareto distribution is fit to the upper tail of the daily maximum wind speed data, and probabilistic return levels at 1, 3, and 5 yr are derived. Wind events meeting the return-level criteria are termed HWEs. The HWEs occurring on the same day are grouped into simultaneous wind exceedance dates, termed multistation events. In a separate analysis, extratropical cyclones are tracked using ERA-Interim. The multistation events are associated with the extratropical cyclone tracks on the basis of cyclone proximity on the day of the event. The multistation wind events are found to be most often associated with cyclones traveling from southwest to northeast, originating west of the Appalachian Mountains. To quantify the relative frequency of the strong-wind-associated cyclones, the full set of northeastern cyclone tracks is separated on the basis of path, using a crosshairs algorithm designed for this region. The tracks separate into an evenly distributed set of four pathways approaching the northeastern United States: from due west, from the southwest, and from the southeast and storms starting off the coast north of the Carolinas. Using the frequency of the tracks in each of the pathways, it is shown that the storms associated with multistation wind events are most likely to approach the northeastern United States from the southwest.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-14-0320.s1.

Corresponding author address: J. F. Booth, 160 Convent Avenue, Marshak Science Building, Room 106, City College of New York, New York, NY 10031-9101. E-mail: jbooth@ccny.cuny.edu
Save