Comparison of Radiative Energy Flows in Observational Datasets and Climate Modeling

Ehrhard Raschke Max Planck Institute for Meteorology and University of Hamburg, Hamburg, Germany

Search for other papers by Ehrhard Raschke in
Current site
Google Scholar
PubMed
Close
,
Stefan Kinne Max Planck Institute for Meteorology, Hamburg, Germany

Search for other papers by Stefan Kinne in
Current site
Google Scholar
PubMed
Close
,
William B. Rossow NOAA–Cooperative Remote Sensing Science and Technology, The City College of New York, New York, New York

Search for other papers by William B. Rossow in
Current site
Google Scholar
PubMed
Close
,
Paul W. Stackhouse Jr NASA Langley Research Center, Hampton, Virginia

Search for other papers by Paul W. Stackhouse Jr in
Current site
Google Scholar
PubMed
Close
, and
Martin Wild Institute for Atmospheric and Climate Studies, ETH Zürich, Zurich, Switzerland

Search for other papers by Martin Wild in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study examines radiative flux distributions and local spread of values from three major observational datasets (CERES, ISCCP, and SRB) and compares them with results from climate modeling (CMIP3). Examinations of the spread and differences also differentiate among contributions from cloudy and clear-sky conditions. The spread among observational datasets is in large part caused by noncloud ancillary data. Average differences of at least 10 W m−2 each for clear-sky downward solar, upward solar, and upward infrared fluxes at the surface demonstrate via spatial difference patterns major differences in assumptions for atmospheric aerosol, solar surface albedo and surface temperature, and/or emittance in observational datasets. At the top of the atmosphere (TOA), observational datasets are less influenced by the ancillary data errors than at the surface. Comparisons of spatial radiative flux distributions at the TOA between observations and climate modeling indicate large deficiencies in the strength and distribution of model-simulated cloud radiative effects. Differences are largest for lower-altitude clouds over low-latitude oceans. Global modeling simulates stronger cloud radiative effects (CRE) by +30 W m−2 over trade wind cumulus regions, yet smaller CRE by about −30 W m−2 over (smaller in area) stratocumulus regions. At the surface, climate modeling simulates on average about 15 W m−2 smaller radiative net flux imbalances, as if climate modeling underestimates latent heat release (and precipitation). Relative to observational datasets, simulated surface net fluxes are particularly lower over oceanic trade wind regions (where global modeling tends to overestimate the radiative impact of clouds). Still, with the uncertainty in noncloud ancillary data, observational data do not establish a reliable reference.

Corresponding author address: Ehrhard Raschke, Max Planck Institute for Meteorology and University of Hamburg, Bundesstrasse 53, 20146 Hamburg, Germany. E-mail: ehrhard.raschke@mpimet.mpg.de

Abstract

This study examines radiative flux distributions and local spread of values from three major observational datasets (CERES, ISCCP, and SRB) and compares them with results from climate modeling (CMIP3). Examinations of the spread and differences also differentiate among contributions from cloudy and clear-sky conditions. The spread among observational datasets is in large part caused by noncloud ancillary data. Average differences of at least 10 W m−2 each for clear-sky downward solar, upward solar, and upward infrared fluxes at the surface demonstrate via spatial difference patterns major differences in assumptions for atmospheric aerosol, solar surface albedo and surface temperature, and/or emittance in observational datasets. At the top of the atmosphere (TOA), observational datasets are less influenced by the ancillary data errors than at the surface. Comparisons of spatial radiative flux distributions at the TOA between observations and climate modeling indicate large deficiencies in the strength and distribution of model-simulated cloud radiative effects. Differences are largest for lower-altitude clouds over low-latitude oceans. Global modeling simulates stronger cloud radiative effects (CRE) by +30 W m−2 over trade wind cumulus regions, yet smaller CRE by about −30 W m−2 over (smaller in area) stratocumulus regions. At the surface, climate modeling simulates on average about 15 W m−2 smaller radiative net flux imbalances, as if climate modeling underestimates latent heat release (and precipitation). Relative to observational datasets, simulated surface net fluxes are particularly lower over oceanic trade wind regions (where global modeling tends to overestimate the radiative impact of clouds). Still, with the uncertainty in noncloud ancillary data, observational data do not establish a reliable reference.

Corresponding author address: Ehrhard Raschke, Max Planck Institute for Meteorology and University of Hamburg, Bundesstrasse 53, 20146 Hamburg, Germany. E-mail: ehrhard.raschke@mpimet.mpg.de
Save
  • Adler, R. F., G. Gu, and G. J. Huffman, 2012: Estimating climatological bias errors for the Global Precipitation Climatology Project (GPCP). J. Appl. Meteor. Climatol., 51, 8499, doi:10.1175/JAMC-D-11-052.

    • Search Google Scholar
    • Export Citation
  • Barkstrom, B. R., 1984: The Earth Radiation Budget Experiment (ERBE). Bull. Amer. Meteor. Soc., 65, 11701185, doi:10.1175/1520-0477(1984)065<1170:TERBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Berger, A., 1978: Long-term variations of daily insolation and quaternary climate changes. J. Atmos. Sci., 35, 23622367, doi:10.1175/1520-0469(1978)035<2362:LTVODI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Doelling, D. R., D. F. Keyes, D. F. Young, B. A. Wielicki, and T. Wong, 2006: The newly released 5-year Terra-based monthly CERES radiative flux and cloud product. Preprints, 12th Conf. on Atmospheric Radiation, Madison, WI, Amer. Meteor. Soc., 9.4. [Available online at https://ams.confex.com/ams/pdfpapers/112727.pdf.]

  • Dutton, E. G., J. J. Michalsky, T. Stoffel, B. W. Forgan, J. Hickey, D. W. Nelson, T. L. Alberta, and I. Reda, 2001: Measurement of broadband diffuse solar irradiance using current commercial instrumentation with a correction for thermal offset errors. J. Atmos. Oceanic Technol., 18, 297314, doi:10.1175/1520-0426(2001)018<0297:MOBDSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Duvel, J. P., and Coauthors, 2001: The ScaRaB–Resurs Earth radiation budget dataset and first results. Bull. Amer. Meteor. Soc., 82, 13971408, doi:10.1175/1520-0477(2001)082<1397:TSRERB>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gates, W. L., and Coauthors, 1999: An overview of the results of the Atmospheric Model Intercomparison Project (AMIP). Bull. Amer. Meteor. Soc., 80, 2955, doi:10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gruber, A., and V. Levizzani, 2008: Assessment of global precipitation products. WMO Rep. WCRP-128, WMP/TD 1430, 50 pp.

  • Gupta, S. K., N. A. Ritchey, A. C. Wilber, C. H. Whitlock, G. G. Gibson, and J. P. W. Stackhouse, 1999: A climatology of surface radiation budget derived from satellite data. J. Climate, 12, 26912710, doi:10.1175/1520-0442(1999)012<2691:ACOSRB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gupta, S. K., P. W. Stackhouse Jr., S. J. Cox, J. C. Mikovitz, and T. Zhang, 2006: Surface radiation budget project completes 22-year data set. GEWEX News, Vol. 16, No. 4, Int. GEWEX Project Office, Silver Spring, MD, 12–13.

  • Hakuba, M. Z., D. Foloni, A. Sanchez-Lorenzo, M. Wild, 2013: Spatial representativeness of ground-based solar radiation measurements. J. Geophys. Res., 118, 85858597, doi:10.1002/jgrd.50673.

    • Search Google Scholar
    • Export Citation
  • Harries, J. E., and Coauthors, 2005: The geostationary Earth Radiation Budget Experiment. Bull. Amer. Meteor. Soc., 86, 945960, doi:10.1175/BAMS-86-7-945.

    • Search Google Scholar
    • Export Citation
  • House, F. B., A. Gruber, G. E. Hunt, and A. T. Mecherikunnel, 1986: History of satellite missions and measurements of the Earth radiation budget (1957-1984). Rev. Geophys., 24, 357377, doi:10.1029/RG024i002p00357.

    • Search Google Scholar
    • Export Citation
  • Huffman, G. J., R. F. Adler, D. T. Bolvin, and G. Gu, 2009: Improving the global precipitation record: GPCP version 2.1. Geophys. Res. Lett., 36, L17808, doi:10.1029/2009GL040000.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • Kato, S., N. Loeb, D. Rutan, F. Rose, S. Mack, W. Miller, and Y. Chen, 2012: Uncertainty estimate of surface irradiances computed with MODIS-, CALIPSO-, and CloudSat-derived cloud and aerosol properties. Surv. Geophys., 33, 395412, doi:10.1007/s10712-012-9179-x.

    • Search Google Scholar
    • Export Citation
  • Kato, S., N. Loeb, F. G. Rose, D. R. Doelling, D. A. Rutan, T. E. Caldwell, L. Yu, and R. A. Weller, 2013: Surface irradiances consistent with CERES-derived top-of-atmosphere shortwave and longwave irradiances. J. Climate, 26, 27192740, doi:10.1175/JCLI-D-12-00436.1.

    • Search Google Scholar
    • Export Citation
  • Kopp, G., and J. Lean, 2011: A new, lower value of total solar irradiance: Evidence and climate significance. Geophys. Res. Lett., 38, L01706, doi:10.1029/2010GL045777.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T., and Coauthors, 2015: The observed state of the energy budget in the early twenty-first century. J. Climate, 28, 83198346, doi:10.1175/JCLI-D-14-00556.1.

    • Search Google Scholar
    • Export Citation
  • Lee, R. B., III, M. A. Gibson, N. Shivakumar, R. Wilson, H. L. Kyle, and A. T. Mecherikunnel, 1991: Solar irradiance measurements: Minimum through maximum solar activity. Meteorologia, 28, 265268, doi:10.1088/0026-1394/28/3/032.

    • Search Google Scholar
    • Export Citation
  • Li, J., B. E. Carlson, and A. A. Lacis, 2009: A study on the temporal and spatial variability of absorbing aerosols using Total Ozone Mapping Spectrometer and Ozone Monitoring Instrument Aerosol Index data. J. Geophys. Res., 114, D09213, doi:10.1029/2008JD011278.

    • Search Google Scholar
    • Export Citation
  • Li, J.-L. F., D. E. Waliser, G. Stephens, S. Lee, T. I. Ecuyer, S. Kato, N. Loeb, and H.-Y. Ma, 2013: Characterizing and understanding radiation budget biases in CMIP3/CMIP5 GCMs, contemporary GCM and reanalysis. J. Geophys. Res. Atmos., 118, 81668184, doi:10.1002/jgrd.50378.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., K. J. Priestley, D. P. Kratz, E. B. Geier, R. N. Green, B. Wielicki, and S. K. Nolan, 2001: Determination of unfiltered radiances from the Clouds and the Earth’s Radiation Energy System instrument. J. Appl. Meteor., 40, 822835, doi:10.1175/1520-0450(2001)040<0822:DOURFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Loeb, N. G., B. A. Wielicki, D. R. Doelling, G. L. Smith, D. F. Keyes, S. Kato, N. M. Smith, and T. Wong, 2009: Toward optimal closure of the earth’s top-of-atmosphere radiation budget. J. Climate, 22, 748766, doi:10.1175/2008JCLI2637.1.

    • Search Google Scholar
    • Export Citation
  • Long, C. N., and D. D. Turner, 2008: A method for continuous estimation of clear-sky downwelling longwave radiative flux developed using ARM surface measurements. J. Geophys. Res., 113, D18206, doi:10.1029/2008JD009936.

    • Search Google Scholar
    • Export Citation
  • Neckel, H., and D. Labs, 1984: The solar radiation between 3300 and 12500A. Solar Phys., 90, 205258, doi:10.1007/BF00173953.

  • Ohmura, A., and Coauthors, 1998: Baseline Surface Radiation Network: New precision radiometry for climate research. Bull. Amer. Meteor. Soc., 79, 21152136, doi:10.1175/1520-0477(1998)079<2115:BSRNBW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ohring, G., B. Wielicki, R. Spencer, B. Emery, and R. Datla, 2005: Satellite instrument calibration for measuring global climate change. Bull. Amer. Meteor. Soc., 86, 13031313, doi:10.1175/BAMS-86-9-1303.

    • Search Google Scholar
    • Export Citation
  • Oreopoulos, L., and Coauthors, 2012: The Continual Intercomparison of Radiation Codes: Results from Phase I. J. Geophys. Res., 117, D06118, doi:10.1029/2011JD016821.

    • Search Google Scholar
    • Export Citation
  • Raschke, E., T. H. Vonder Haar, W. R. Bandeen, and M. Pasternak, 1973: The annual radiation budget of the Earth-atmosphere system during 1969–70 from Nimbus 3 measurements. J. Atmos. Sci., 30, 341364, doi:10.1175/1520-0469(1973)030<0341:TARBOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Raschke, E., M. A. Giorgetta, S. Kinne, and M. Wild, 2005: How accurate did GCMs compute the insolation at TOA for AMIP-2? Geophys. Res. Lett., 32, L23707, doi:10.1029/2005GL024411.

    • Search Google Scholar
    • Export Citation
  • Raschke, E., S. Kinne, and P. W. Stackhouse Jr., 2012a: GEWEX Radiative Flux Assessment (RFA) Volume 1: Assessment. WCRP Rep. 19/2012, 273 pp. [Available online at http://www.wcrp-climate.org/documents/GEWEX%20RFA-Volume%201-report.pdf.] Vol. 1: Scientific Results, 520 pp, Vol. 2: Appendices and Details, 500 pp.

  • Raschke, E., S. Kinne, and P. W. Stackhouse Jr., 2012b: GEWEX Radiative Flux Assessment (RFA) Volume 2: Appendices with supplementary information. WCRP Rep. 19/2012, 215 pp.

  • Roesch, A., M. Wild, A. Ohmura, E. Dutton, C. N. Long, and T. Zhang, 2011: Assessment of the completeness of BSRN radiation records and the consequence for the computation of monthly means. Atmos. Meas. Tech., 4, 339354, doi:10.5194/amt-4-339-2011.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and A. A. Lacis, 1990: Global, seasonal cloud variations from satellite radiance measurements. Part II: Cloud properties and radiative effects. J. Climate, 3, 12041253, doi:10.1175/1520-0442(1990)003<1204:GSCVFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and R. Schiffer, 1999: Advances in understanding clouds from ISCCP. Bull. Amer. Meteor. Soc., 80, 22612287, doi:10.1175/1520-0477(1999)080<2261:AIUCFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smith, G. L., R. N. Green, E. Raschke, L. M. Avis, J. T. Suttles, B. A. Wielicki, and R. Davies, 1986: Inversion methods for satellite studies of the earth’s radiation budget: Development of algorithms for the ERBE mission. Rev. Geophys., 24, 407421, doi:10.1029/RG024i002p00407.

    • Search Google Scholar
    • Export Citation
  • Smith, G. L., Z. P. Szewczyk, D. A. Rutan, and R. B. Lee, 2006: Comparison of measurements from satellite radiation budget instruments. J. Geophys. Res., 111, D04101, doi:10.1029/2005JD006307.

    • Search Google Scholar
    • Export Citation
  • Stackhouse, P. W., S. J. Cox, S. Gupta, M. Chiacchio, and J. C. Mikovitz, 2001: The WCRP / GEWEX surface radiation budget project release 2: An assessment of surface fluxes at 1degree resolution. IRS 2000, Current Problems in Atmospheric Radiation, W. Smith and Y. Timofeyev, Eds. A. Deepak Publishing, 485–488.

  • Stackhouse, P. W., S. K. Gupta, S. J. Cox, T. Zhang, J. C. Mikovitz, and L. M. Hinkelman, 2011: The NASA/GEWEX Surface Radiation Budget Release 3.0: 24.5-Year dataset. GEWEX News, Int. GEWEX Project Office, Silver Spring, MD, 10–12. [Available online at http://www.gewex.org/gewex-content/files_mf/1432209318Feb2011.pdf.]

  • Stephens, G. L., and Coauthors, 2002: The CloudSat mission and the A-Train: A new dimension of space-based observations of clouds and precipitation. Bull. Amer. Meteor. Soc., 83, 17711790, doi:10.1175/BAMS-83-12-1771.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and Coauthors, 2012: An update on the earth’s energy balance in light of the latest global observation. Nat. Geosci., 5, 691696, doi:10.1038/ngeo1580.

    • Search Google Scholar
    • Export Citation
  • Stubenrauch, C. J., and Coauthors, 2013: Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX Radiation Panel. Bull. Amer. Meteor. Soc., 94, 10311049, doi:10.1175/BAMS-D-12-00117.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Mackaro, 2011: Atmospheric moisture transports from ocean to land and global energy flows in reanalysis. J. Climate, 24, 49074924, doi:10.1175/2011JCLI4171.1.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. W., R. D. Cess, M. D. King, D. A. Randall, and E. F. Harrison, 1995: Mission to Planet Earth: Role of clouds and radiation in climate. Bull. Amer. Meteor. Soc., 76, 21252153, doi:10.1175/1520-0477(1995)076<2125:MTPERO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wielicki, B. W., B. R. Barkstrom, E. F. Harrison, R. B. Lee III, G. L. Smith, and J. E. Cooper, 1996: Clouds and the Earth’s Radiant Energy System (CERES): An Earth Observing System experiment. Bull. Amer. Meteor. Soc., 77, 853868, doi:10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wild, M., 2008: Short-wave and long-wave surface radiation budgets in GCMs: A review based on the IPCC-AR4/CMIP3 models. Tellus, 60A, 932945, doi:10.1111/j.1600-0870.2008.00342.x.

    • Search Google Scholar
    • Export Citation
  • Wild, M., B. Trüssel, A. Ohmura, C. N. Long, G. König-Langlo, E. G. Dutton, and A. Tvetskov, 2009: Global dimming and brightening: An update beyond 2000. J. Geophys. Res. Atmos., 114, D00D13, doi:10.1029/2008JD011382.

    • Search Google Scholar
    • Export Citation
  • Wild, M., D. Folini, Ch. Schär, N. Loeb, E. G. Dutton, and G. König-Langlo, 2012: The global energy balance from a surface perspective. Climate Dyn., 40, 31073134, doi:10.1007/s00382-012-1569-8.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-C., and W. B. Rossow, 1997: Estimating meridional energy transports by the atmospheric and oceanic general circulation using boundary flux data. J. Climate, 10, 23582373, doi:10.1175/1520-0442(1997)010<2358:EMETBT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-C., W. B. Rossow, and A. A. Lacis, 1995: Calculation of surface and top-of-atmosphere radiative fluxes from physical quantities based on ISCCP datasets, Part I: Method and sensitivity to input data uncertainties. J. Geophys. Res., 100, 11491165, doi:10.1029/94JD02747.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-C., W. B. Rossow, A. A. Lacis, V. Oinas, and M. I. Mishchenko, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J. Geophys. Res., 109, D19105, doi:10.1029/2003JD004457.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-C., W. B. Rossow, and P. W. Stackhouse, 2006: Comparison of different global information sources used in surface radiative flux calculation: Radiative properties of the near-surface atmosphere. J. Geophys. Res., 111, D13106, doi:10.1029/2005JD006873.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-C., W. B. Rossow, and P. W. Stackhouse, 2007a: Comparison of different global information sources used in surface radiative flux calculation: Radiative properties of the surface. J. Geophys. Res., 112, D01102, doi:10.1029/2005JD007008.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-C., W. B. Rossow, P. W. Stackhouse, A. Romanou, and B. A. Wielicki, 2007b: Decadal variations of global energy and ocean heat budget and meridional energy transports inferred from recent global data sets. J. Geophys. Res., 112, D22101, doi:10.1029/2007JD008435.

    • Search Google Scholar
    • Export Citation
  • Zhang, Y.-C., W. B. Rossow, C. N. Long, and E. G. Dutton, 2010: Exploiting diurnal variations to evaluate the ISCCP-FD flux calculations and Radiative-Flux-Analysis-Processed Surface Observations from BSRN, ARM, and SURFRAD. J. Geophys. Res., 115, D15105, doi:10.1029/2009JD012743.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 664 275 123
PDF Downloads 483 46 2