Impacts of Gulf of Mexico SST Anomalies on Southern Plains Freezing Precipitation: ARW Sensitivity Study of the 28–30 January 2010 Winter Storm

Esther D. Mullens Cooperative Institute for Mesoscale Meteorological Studies, and South Central Climate Science Center, University of Oklahoma, Norman, Oklahoma

Search for other papers by Esther D. Mullens in
Current site
Google Scholar
PubMed
Close
,
Lance M. Leslie Cooperative Institute for Mesoscale Meteorological Studies, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Lance M. Leslie in
Current site
Google Scholar
PubMed
Close
, and
Peter J. Lamb Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

Search for other papers by Peter J. Lamb in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Ice storms are an infrequent but significant hazard in the U.S southern Great Plains. Common synoptic profiles for freezing precipitation reveal advection of low-level warm moist air from the Gulf of Mexico (GOM), above a shallow Arctic air mass ahead of a midlevel trough. Because the GOM is the proximal basin and major moisture source, this study investigates impacts of varying GOM sea surface temperature (SST) on the thermodynamic evolution of a winter storm that occurred during 28–30 January 2010, with particular emphasis on the modulation of freezing precipitation. A high-resolution, nested ARW sensitivity study with a 3.3-km inner domain is performed, using six representations of GOM SST, including control, climatological mean, uniform ±2°C from control, and physically constrained upper- and lower-bound basin-average anomalies from a 30-yr dataset. The simulations reveal discernable impacts of SST on the warm-layer inversion, precipitation intensity, and low-level dynamics. Whereas total precipitation for the storm increased monotonically with SST, the freezing-precipitation response was more varied and nonlinear, with the greatest accumulation decreases occurring for the coolest SST perturbation, particularly at moderate precipitation rates. Enhanced precipitation and warm-layer intensity promoted by warmer SST were offset for the highest perturbations by deepening of the weak 850-hPa low circulation and faster eastward progression associated with enhanced baroclinicity and diabatic generation of potential vorticity. Air-parcel trajectories terminating within the freezing-precipitation region were examined to identify airmass sources and modification. These results suggest that GOM SST can affect the severity of concurrent ice-storm events in the southern Great Plains, with warmer basin SST potentially exacerbating the risk of damaging ice accumulations.

Corresponding author address: Esther D. Mullens, Suite 2100, 201 Stephenson Parkway, Norman, OK 73019. E-mail: esther.white@ou.edu

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-14-0289.s1.

Abstract

Ice storms are an infrequent but significant hazard in the U.S southern Great Plains. Common synoptic profiles for freezing precipitation reveal advection of low-level warm moist air from the Gulf of Mexico (GOM), above a shallow Arctic air mass ahead of a midlevel trough. Because the GOM is the proximal basin and major moisture source, this study investigates impacts of varying GOM sea surface temperature (SST) on the thermodynamic evolution of a winter storm that occurred during 28–30 January 2010, with particular emphasis on the modulation of freezing precipitation. A high-resolution, nested ARW sensitivity study with a 3.3-km inner domain is performed, using six representations of GOM SST, including control, climatological mean, uniform ±2°C from control, and physically constrained upper- and lower-bound basin-average anomalies from a 30-yr dataset. The simulations reveal discernable impacts of SST on the warm-layer inversion, precipitation intensity, and low-level dynamics. Whereas total precipitation for the storm increased monotonically with SST, the freezing-precipitation response was more varied and nonlinear, with the greatest accumulation decreases occurring for the coolest SST perturbation, particularly at moderate precipitation rates. Enhanced precipitation and warm-layer intensity promoted by warmer SST were offset for the highest perturbations by deepening of the weak 850-hPa low circulation and faster eastward progression associated with enhanced baroclinicity and diabatic generation of potential vorticity. Air-parcel trajectories terminating within the freezing-precipitation region were examined to identify airmass sources and modification. These results suggest that GOM SST can affect the severity of concurrent ice-storm events in the southern Great Plains, with warmer basin SST potentially exacerbating the risk of damaging ice accumulations.

Corresponding author address: Esther D. Mullens, Suite 2100, 201 Stephenson Parkway, Norman, OK 73019. E-mail: esther.white@ou.edu

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-14-0289.s1.

Supplementary Materials

    • Supplemental Materials (PDF 4.93 MB)
Save
  • Bernadet, L., J. Wolff, L. Nance, A. Loughe, B. Weatherford, E. Gilleland, and B. Brown, 2009: Comparison between ARW and NMM objective verification scores. Preprints, 23rd Conf. on Weather Analysis and Forecasting/19th Conf. on Numerical Weather Prediction, Omaha, NE, Amer. Meteor. Soc., 5A.2. [Available online at https://ams.confex.com/ams/pdfpapers/153552.pdf.]

  • Bernstein, B. C., 2000: Regional and local influences on freezing drizzle, freezing rain, and ice pellets. Wea. Forecasting, 15, 485508, doi:10.1175/1520-0434(2000)015<0485:RALIOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bond, N. A., M. F. Cronin, and M. Garvert, 2010: Atmospheric sensitivity to SST near the Kuroshio Extension during the extratropical transition of Typhoon Tokage. Mon. Wea. Rev., 138, 26442663, doi:10.1175/2010MWR3198.1.

    • Search Google Scholar
    • Export Citation
  • Booth, J. F., L. Thompson, J. Patoux, and K. Kelly, 2012: Sensitivity of midlatitude storm intensification to perturbations in the sea surface temperature near the Gulf Stream. Mon. Wea. Rev., 140, 12411256, doi:10.1175/MWR-D-11-00195.1.

    • Search Google Scholar
    • Export Citation
  • Bourgouin, P., 2000: A method to determine precipitation types. Wea. Forecasting, 15, 583592, doi:10.1175/1520-0434(2000)015<0583:AMTDPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brock, F. V., K. C. Crawford, R. L. Elliot, G. W. Cuperus, S. J. Stadler, H. L. Johnson, and M. D. Eilts, 1995: The Oklahoma Mesonet: A technical overview. J. Atmos. Oceanic Technol., 12, 519, doi:10.1175/1520-0426(1995)012<0005:TOMATO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Call, D. A., 2009: As assessment of National Weather Service warning procedures for ice storms. Wea. Forecasting, 24, 104120, doi:10.1175/2008WAF2007111.1.

    • Search Google Scholar
    • Export Citation
  • Case, J. L., S. V. Kumar, J. Srikishen, and G. J. Jedlovec, 2011: Improving numerical weather predictions of summertime precipitation over the southeastern United States through a high-resolution initialization of the surface state. Wea. Forecasting, 26, 785807, doi:10.1175/2011WAF2222455.1.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., 2003: Characteristics of ice storms in the United Sates. J. Appl. Meteor., 42, 630639, doi:10.1175/1520-0450(2003)042<0630:COISIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Changnon, S. A., and T. R. Karl, 2003: Temporal and spatial variations of freezing rain in the contiguous United States. J. Appl. Meteor., 42, 13021316, doi:10.1175/1520-0450(2003)042<1302:TASVOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chelton, D. B., and F. J. Wentz, 2005: Global microwave satellite observations of sea surface temperature for numerical weather prediction and climate research. Bull. Amer. Meteor. Soc., 86, 10971115, doi:10.1175/BAMS-86-8-1097.

    • Search Google Scholar
    • Export Citation
  • Cortinas, J. V., Jr., B. C. Bernstein, C. C. Robbins, and J. W. Strapp, 2004: An analysis of freezing rain, freezing drizzle, and ice pellets across the United States and Canada: 1976–90. Wea. Forecasting, 19, 377390, doi:10.1175/1520-0434(2004)019<0377:AAOFRF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Courmou, D., and S. Rahmstorf, 2012: A decade of weather extremes. Nat. Climate Change, 2, 491496.

  • Deser, C., A. Phillips, V. Bourdette, and T. Haiyan, 2012: Uncertainty in climate change projections: The role of internal variability. Climate Dyn., 38, 527546, doi:10.1007/s00382-010-0977-x.

    • Search Google Scholar
    • Export Citation
  • Fuhrmann, C. M., 2011: A trajectory approach to analyzing the ingredients associated with heavy winter storms in central North Carolina. Ph.D. dissertation, University of North Carolina, 220 pp.

  • Fuhrmann, C. M., and C. E. Konrad II, 2013: A trajectory approach to analyzing the ingredients associated with heavy winter storms in central North Carolina. Wea. Forecasting, 28, 647667, doi:10.1175/WAF-D-12-00079.1.

    • Search Google Scholar
    • Export Citation
  • Gao, Y., T. Wu, B. Chen, J. Wang, and Y. Liu, 2013: A numerical simulation of microphysical structure of cloud associated with the 2008 winter freezing rain over southern China. J. Meteor. Soc. Japan, 91, 101117, doi:10.2151/jmsj.2013-202.

    • Search Google Scholar
    • Export Citation
  • Graff, L. S., and J. H. LaCasce, 2014: Changes in cyclone characteristics in response to modified SSTs. J. Climate, 27, 42734296, doi:10.1175/JCLI-D-13-00353.1.

    • Search Google Scholar
    • Export Citation
  • Grout, T., H. Yang, J. Basara, B. Balasundaram, Z. Kong, and T. S. Bukkapatnam, 2012: Significant winter weather events and associated socioeconomic impacts (federal aid expenditures) across Oklahoma: 2000–10. Wea. Climate Soc., 4, 4858, doi:10.1175/WCAS-D-11-00057.1.

    • Search Google Scholar
    • Export Citation
  • Gyakum, J. R., and P. J. Roebber, 2001: The 1998 ice storm—Analysis of a planetary-scale event. Mon. Wea. Rev., 129, 29832997, doi:10.1175/1520-0493(2001)129<2983:TISAOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holloway, B. S., 2007: The role of the Great Lakes in northwest flow snowfall events in the southern Appalachian Mountains. M.S. thesis, Dept. of Marine, Earth and Atmospheric Sciences, North Carolina State University, 204 pp. [Available online at http://www.lib.ncsu.edu/resolver/1840.16/1202.]

  • Hong, S. Y., J. Ock, and J. Lim, 2006: The WRF single moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hosek, J., P. Musilek, E. Lozowski, and P. Pytlak, 2011: Forecasting severe ice storms using numerical weather prediction: The March 2010 Newfoundland event. Nat. Hazards Earth Syst. Sci., 11, 587595, doi:10.5194/nhess-11-587-2011.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., doi:10.1017/CBO9781107415324.

  • Johnson, H. L., and C. E. Duchon, 1995: Atlas of Oklahoma Climate. University of Oklahoma Press, 104 pp.

  • Kain, J. S., S. M. Goss, and M. E. Baldwin, 2000: The melting effect as a factor in precipitation-type forecasting. Wea. Forecasting, 15, 700714, doi:10.1175/1520-0434(2000)015<0700:TMEAAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kara, A. B., and C. N. Barron, 2007: Fine-resolution satellite-based daily sea surface temperatures over the global ocean. J. Geophys. Res., 112, C05041, doi:10.1029/2006JC004021.

    • Search Google Scholar
    • Export Citation
  • Kunkel, K. E., and Coauthors, 2013: Monitoring and understanding trends in extreme storms: State of knowledge. Bull. Amer. Meteor. Soc., 94, 499514, doi:10.1175/BAMS-D-11-00262.1.

    • Search Google Scholar
    • Export Citation
  • Lackmann, G., 2011a: Improving understanding and prediction of warm season precipitation systems in the southeastern and mid-Atlantic regions. North Carolina State University Dept. of Marine, Earth, & Atmospheric Sciences Final Rep., 36 pp. [Available online at http://www.erh.noaa.gov/rah/science/NCSU_CSTAR_III_Final_Report.pdf.]

  • Lackmann, G., 2011b: Midlatitude Synoptic Meteorology: Dynamics, Analysis, and Forecasting. Amer. Meteor. Soc., 345 pp.

  • Lebeaupin, C., V. Ducrocq, and H. Giordani, 2006: Sensitivity of torrential rain events to sea surface temperature based on high-resolution numerical forecasts. J. Geophys. Res., 111, D12110, doi:10.1029/2005JD006541.

    • Search Google Scholar
    • Export Citation
  • Lindzen, R. S., and B. Farrell, 1980: A simple approximate result for the growth rate of baroclinic instabilities. J. Atmos. Sci., 37, 16481654, doi:10.1175/1520-0469(1980)037<1648:ASARFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McPherson, R. A., and Coauthors, 2007: Statewide monitoring of the mesoscale environment: A technical update on the Oklahoma Mesonet. J. Atmos. Oceanic Technol., 24, 301321, doi:10.1175/JTECH1976.1.

    • Search Google Scholar
    • Export Citation
  • Mellor, G. L., and T. Yamada, 1982: Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. Space Phys., 20, 851875, doi:10.1029/RG020i004p00851.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2005: A multimoment bulk microphysics parameterization. Part I: Analysis of the role of the spectral shape parameter. J. Atmos. Sci., 62, 30513064, doi:10.1175/JAS3534.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2006a: A multimoment bulk physics parameterization. Part III: Control simulation of a hailstorm. J. Atmos. Sci., 63, 31143136, doi:10.1175/JAS3816.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., and M. K. Yau, 2006b: A multimoment bulk physics parameterization. Part IV: Sensitivity experiments. J. Atmos. Sci., 63, 31373159, doi:10.1175/JAS3817.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., M. K. Yau, J. Mailhot, S. Belair, and R. McTaggart-Cowan, 2010: Simulation of an orographic precipitation event during IMPROVE-2. Part II: Sensitivity to the number of moments in the bulk microphysics scheme. Mon. Wea. Rev., 138, 625642, doi:10.1175/2009MWR3121.1.

    • Search Google Scholar
    • Export Citation
  • Milbrandt, J. A., J. Thériault, and R. Mo, 2014: Modeling the phase transition associated with melting snow in a 1D kinematic framework: sensitivity to the microphysics. Pure Appl. Geophys., 171, 303322, doi:10.1007/s00024-012-0552-y.

    • Search Google Scholar
    • Export Citation
  • Miller, D. K., 2012: Near-term effects of the lower atmosphere in simulated northwest flow snowfall forced over the southern Appalachians. Wea. Forecasting, 27, 11981216, doi:10.1175/WAF-D-11-00103.1.

    • Search Google Scholar
    • Export Citation
  • Mullens, E. D., 2014: Moisture and thermal characteristics of Southern Plains ice storms: Insights from a regional synoptic climatology and high-resolution WRF-ARW sensitivity study. Ph.D. dissertation, University of Oklahoma, 342 pp.

  • NCEP, 2000a: NCEP/CPC four kilometer precipitation set, gauge and radar (updated quarterly). U.S. Dept. Commerce/NOAA/NWS/National Centers for Environmental Prediction/Climate Prediction Center and University Corporation for Atmospheric Research Joint Office for Science Support, Research Data Archive at the National Center for Atmospheric Research Computational and Information Systems Laboratory, accessed September 2013. [Available online at http://rda.ucar.edu/datasets/ds507.5.]

  • NCEP, 2000b: NCEP FNL operational model global tropospheric analyses, continuing from July 1999 (updated daily). U.S. Dept. Commerce/NOAA/NWS/National Centers for Environmental Prediction, Research Data Archive at the National Center for Atmospheric Research Computational and Information Systems Laboratory, accessed May 2013, doi:10.5065/D6M043C6.

  • Oklahoma Department of Emergency Management, 2010: 2010 annual report. Oklahoma Dept. of Emergency Management Rep., 15 pp. [Available online at https://www.ok.gov/OEM/documents/Annual%20Report%20-%2016%20pgs.pdf.]

  • Ramos da Silva, R., G. Bohrer, D. Werth, M. J. Otte, and R. Avissar, 2006: Sensitivity of ice storms in the southeastern United States to Atlantic SST—Insights from a case study of the December 2002 storm. Mon. Wea. Rev., 134, 14541464, doi:10.1175/MWR3127.1.

    • Search Google Scholar
    • Export Citation
  • Ressler, G. M., S. M. Milrad, E. H. Atallah, and J. R. Gyakum, 2012: Synoptic-scale analysis of freezing rain events in Montreal, Quebec, Canada. Wea. Forecasting, 27, 362378, doi:10.1175/WAF-D-11-00071.1.

    • Search Google Scholar
    • Export Citation
  • Reynolds, R. W., T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, 2007: Daily high-resolution blended analyses for sea surface temperature. J. Climate, 20, 54735496, doi:10.1175/2007JCLI1824.1.

    • Search Google Scholar
    • Export Citation
  • Robbins, C., and J. V. Cortinas Jr., 2002: Local and synoptic environments associated with freezing rain in the contiguous United States. Wea. Forecasting, 17, 4765, doi:10.1175/1520-0434(2002)017<0047:LASEAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sanders, K. J., C. M. Gravelle, J. P. Gagen, and C. E. Graves, 2013: Characteristics of major ice storms in the central United States. J. Oper. Meteor., 1, 100113, doi:10.15191/nwajom.2013.0110.

    • Search Google Scholar
    • Export Citation
  • Semmler, T., S. Varghese, R. McGrath, P. Nolan, S. Wang, P. Lynch, and C. O’Dowd, 2008: Regional model simulation of North Atlantic cyclones: Present climate and idealized response to increased sea surface temperature. J. Geophys. Res., 113, D02107, doi:10.1029/2006JD008213.

    • Search Google Scholar
    • Export Citation
  • Shi, J. J., and Coauthors, 2010: WRF simulations of the 20–22 January 2007 snow events over eastern Canada: Comparison with in situ and satellite observations. J. Appl. Meteor. Climatol., 49, 22462266, doi:10.1175/2010JAMC2282.1.

    • Search Google Scholar
    • Export Citation
  • Shin, H. H., and S.-Y. Hong, 2011: Intercomparison of planetary boundary layer parameterizations in the WRF Model for a single day from CASES-99. Bound.-Layer Meteor., 139, 261281, doi:10.1007/s10546-010-9583-z.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. National Center for Atmospheric Research Tech. Note NCAR/TN–475+STR, 113 pp. [Available online at http://www2.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

  • Stensrud, D. J., 1996: Importance of low-level jets to climate: A review. J. Climate, 9, 16981711, doi:10.1175/1520-0442(1996)009<1698:IOLLJT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stewart, R. E., and P. King, 1987: Freezing precipitation in winter storms. Mon. Wea. Rev., 115, 12701279, doi:10.1175/1520-0493(1987)115<1270:FPIWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, M. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, W. T., and S. D. Burk, 1993: Postfrontal boundary-layer modification over the western Gulf of Mexico during GUFMEX. J. Appl. Meteor., 32, 15211537, doi:10.1175/1520-0450(1993)032<1521:PBLMOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., 2012: Framing the way to relate climate extremes to climate change. Climatic Change, 115, 283290, doi:10.1007/s10584-012-0441-5.

    • Search Google Scholar
    • Export Citation
  • Vavrus, S., J. E. Walsh, W. L. Chapman, and D. Portis, 2006: The behavior of extreme cold air outbreaks under greenhouse warming. Int. J. Climatol., 26, 11331147, doi:10.1002/joc.1301.

    • Search Google Scholar
    • Export Citation
  • Wang, H., E. Yu, and S. Yang, 2011: An exceptionally heavy snowfall in northeast China: Large-scale circulation anomalies and hindcast of the NCAR-WRF Model. Meteor. Atmos. Phys., 113, 1125, doi:10.1007/s00703-011-0147-7.

    • Search Google Scholar
    • Export Citation
  • Xie, S., and Coauthors, 2010: Clouds and more: ARM Climate Modeling Best Estimate data. Bull. Amer. Meteor. Soc., 91, 1320, doi:10.1175/2009BAMS2891.1.

    • Search Google Scholar
    • Export Citation
  • Xie, S.-P., C. Deser, G. A. Vecchi, M. Jian, T. Haiyan, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966986, doi:10.1175/2009JCLI3329.1.

    • Search Google Scholar
    • Export Citation
  • Zerr, R. J., 1997: Freezing rain: An observational and theoretical study. J. Appl. Meteor., 36, 16471661, doi:10.1175/1520-0450(1997)036<1647:FRAOAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 751 115 7
PDF Downloads 301 61 6