Evaluating Satellite-Based Diurnal Cycles of Precipitation in the African Tropics

Uwe Pfeifroth Department of Climate and Environment, Deutscher Wetterdienst, Offenbach am Main, Germany

Search for other papers by Uwe Pfeifroth in
Current site
Google Scholar
PubMed
Close
,
Jörg Trentmann Department of Climate and Environment, Deutscher Wetterdienst, Offenbach am Main, Germany

Search for other papers by Jörg Trentmann in
Current site
Google Scholar
PubMed
Close
,
Andreas H. Fink Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

Search for other papers by Andreas H. Fink in
Current site
Google Scholar
PubMed
Close
, and
Bodo Ahrens Institute for Atmospheric and Environmental Sciences, Goethe University, Frankfurt am Main, Germany

Search for other papers by Bodo Ahrens in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Precipitation plays a major role in the energy and water cycles of the earth. Because of its variable nature, consistent observations of global precipitation are challenging. Satellite-based precipitation datasets present an alternative to in situ–based datasets in areas sparsely covered by ground stations. These datasets are a unique tool for model evaluations, but the value of satellite-based precipitation datasets depends on their application and scale. Numerous validation studies considered monthly or daily time scales, while less attention is given to subdaily scales. In this study subdaily satellite-based rainfall data are analyzed in West Africa, a region with strong diurnal variability. Several satellite-based precipitation datasets are validated, including Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA), TRMM 3G68 products, Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN), and Climate Prediction Center (CPC) morphing technique (CMORPH) data. As a reference, highly resolved in situ data from the African Monsoon Multidisciplinary Analysis–Couplage de l’Atmosphere Tropical et du Cycle Hydrologique (AMMA-CATCH) are used. As a result, overall the satellite products capture the diurnal cycles of precipitation and its variability as observed on the ground reasonably well. CMORPH and TMPA data show overall good results. For locally induced convective rainfall in the evening most satellite data show slight delays in peak precipitation of up to 2 h.

Denotes Open Access content.

Corresponding author address: Uwe Pfeifroth, Deutscher Wetterdienst, Frankfurter Staße 135, 63067 Offenbach am Main, Germany. E-mail: uwe.pfeifroth@dwd.de

Additional affiliation: Institute for Atmospheric and Environmental Sciences, Goethe University, Frankfurt am Main, Germany.

Abstract

Precipitation plays a major role in the energy and water cycles of the earth. Because of its variable nature, consistent observations of global precipitation are challenging. Satellite-based precipitation datasets present an alternative to in situ–based datasets in areas sparsely covered by ground stations. These datasets are a unique tool for model evaluations, but the value of satellite-based precipitation datasets depends on their application and scale. Numerous validation studies considered monthly or daily time scales, while less attention is given to subdaily scales. In this study subdaily satellite-based rainfall data are analyzed in West Africa, a region with strong diurnal variability. Several satellite-based precipitation datasets are validated, including Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA), TRMM 3G68 products, Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks (PERSIANN), and Climate Prediction Center (CPC) morphing technique (CMORPH) data. As a reference, highly resolved in situ data from the African Monsoon Multidisciplinary Analysis–Couplage de l’Atmosphere Tropical et du Cycle Hydrologique (AMMA-CATCH) are used. As a result, overall the satellite products capture the diurnal cycles of precipitation and its variability as observed on the ground reasonably well. CMORPH and TMPA data show overall good results. For locally induced convective rainfall in the evening most satellite data show slight delays in peak precipitation of up to 2 h.

Denotes Open Access content.

Corresponding author address: Uwe Pfeifroth, Deutscher Wetterdienst, Frankfurter Staße 135, 63067 Offenbach am Main, Germany. E-mail: uwe.pfeifroth@dwd.de

Additional affiliation: Institute for Atmospheric and Environmental Sciences, Goethe University, Frankfurt am Main, Germany.

Save
  • Andersson, A., C. Klepp, K. Fennig, S. Bakan, H. Grassl, and J. Schulz, 2011: Evaluation of HOAPS-3 ocean surface freshwater flux components. J. Appl. Meteor. Climatol., 50, 379398, doi:10.1175/2010JAMC2341.1.

    • Search Google Scholar
    • Export Citation
  • Ashouri, H., K.-L. Hsu, S. Sorooshian, D. K. Braithwaite, K. R. Knapp, L. D. Cecil, B. R. Nelson, and O. P. Prat, 2015: PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Amer. Meteor. Soc., 96, 6983, doi:10.1175/BAMS-D-13-00068.1.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., S. Noureddine, L. Philippe, J.-P. Chamboureau, A. Beljaars, and N. Bormann, 2014: Representing equilibrium and nonequilibrium convection in large-scale models. J. Atmos. Sci., 71, 734753, doi:10.1175/JAS-D-13-0163.1.

    • Search Google Scholar
    • Export Citation
  • Birch, C. E., D. J. Parker, J. H. Marsham, D. Copsey, and L. Garcia-Carreras, 2014: A seamless assessment of the role of convection in the water cycle of the West African monsoon. J. Geophys. Res. Atmos., 119, 28902912, doi:10.1002/2013JD020887.

    • Search Google Scholar
    • Export Citation
  • Dirmeyer, P. A., and Coauthors, 2012: Simulating the diurnal cycle of rainfall in global climate models: Resolution versus parameterization. Climate Dyn., 39, 399418, doi:10.1007/s00382-011-1127-9.

    • Search Google Scholar
    • Export Citation
  • Dobler, A., and B. Ahrens, 2008: Precipitation by a regional climate model and bias correction in Europe and South Asia. Meteor. Z., 17, 499509, doi:10.1127/0941-2948/2008/0306.

    • Search Google Scholar
    • Export Citation
  • Ebert, E. E., J. E. Janowiak, and C. Kidd, 2007: Comparison of near-real-time precipitation estimates from satellite observations and numerical models. Bull. Amer. Meteor. Soc., 88, 4764, doi:10.1175/BAMS-88-1-47.

    • Search Google Scholar
    • Export Citation
  • Fink, A. H., D. G. Vincent, and V. Ermert, 2006: Rainfall types in the West African Sudanian zone during the summer monsoon 2002. Mon. Wea. Rev., 134, 21432164, doi:10.1175/MWR3182.1.

    • Search Google Scholar
    • Export Citation
  • Fink, A. H., S. Pohle, and R. Hoffmann, 2008: Spatial and temporal rainfall climatologies of Benin. IMPETUS Atlas Benin. Research Results 2000–2007, 3rd ed., M. Judex and H.-P. Thamm, Eds., Department of Geography, University of Bonn, Bonn, Germany, 21–22. [Available online at http://doi.pangaea.de/10.1594/PANGAEA.821833.]

  • Folkins, I., T. Mitovski, and J. R. Pierce, 2014: A simple way to improve the diurnal cycle in convective rainfall over land in climate models. J. Geophys. Res. Atmos., 119, 21132130, doi:10.1002/2013JD020149.

    • Search Google Scholar
    • Export Citation
  • Fosser, G., S. Khodayar, and P. Berg, 2015: Benefit of convection permitting climate model simulations in the representation of convective precipitation. Climate Dyn., 44, 4560, doi:10.1007/s00382-014-2242-1.

    • Search Google Scholar
    • Export Citation
  • Futyan, J. M., and A. D. Del Genio, 2007: Deep convective system evolution over Africa and the tropical Atlantic. J. Climate, 20, 50415060, doi:10.1175/JCLI4297.1.

    • Search Google Scholar
    • Export Citation
  • Gosset, M., J. Viarre, G. Quantin, and M. Alcoba, 2013: Evaluation of several rainfall products used for hydrological applications over West Africa using two high-resolution gauge networks. Quart. J. Roy. Meteor. Soc., 139, 923940, doi:10.1002/qj.2130.

    • Search Google Scholar
    • Export Citation
  • Gounou, A., F. Guichard, and F. Couvreux, 2012: Observations of diurnal cycles over a West African meridional transect: Pre-monsoon and full-monsoon seasons. Bound.-Layer Meteor., 144, 329357, doi:10.1007/s10546-012-9723-8.

    • Search Google Scholar
    • Export Citation
  • Haddad, Z. S., E. A. Smith, C. D. Kummerow, T. Iguchi, M. R. Farrar, S. L. Durden, M. Alves, and W. S. Olson, 1997: The TRMM ‘day-1’ radar/radiometer combined rain-profiling algorithm. J. Meteor. Soc. Japan, 75, 799809.

    • Search Google Scholar
    • Export Citation
  • He, X., and Coauthors, 2015: The diurnal cycle of precipitation in regional spectral model simulations over West Africa: Sensitivities to resolution and cumulus schemes. Wea. Forecasting, 30, 424445, doi:10.1175/WAF-D-14-00013.1.

    • Search Google Scholar
    • Export Citation
  • Huffman, G., and D. T. Bolvin, 2007: The TRMM Multisatellite Precipitation Analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeor., 8, 3855, doi:10.1175/JHM560.1.

    • Search Google Scholar
    • Export Citation
  • Janowiak, J. E., V. E. Kousky, and R. J. Joyce, 2005: Diurnal cycle of precipitation determined from the CMORPH high spatial and temporal resolution global precipitation analyses. J. Geophys. Res., 110, D23105, doi:10.1029/2005JD006156.

    • Search Google Scholar
    • Export Citation
  • Joyce, R., J. Janowiak, P. A. Arkin, and P. Xie, 2004: CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeor., 5, 487503, doi:10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kidd, C., and V. Levizzani, 2011: Status of satellite precipitation retrievals. Hydrol. Earth Syst. Sci., 15, 11091116, doi:10.5194/hess-15-1109-2011.

    • Search Google Scholar
    • Export Citation
  • Kikuchi, K., and B. Wang, 2008: Diurnal precipitation regimes in the global tropics. J. Climate, 21, 26802696, doi:10.1175/2007JCLI2051.1.

    • Search Google Scholar
    • Export Citation
  • Kirstetter, P.-E., N. Viltard, and M. Gosset, 2013: An error model for instantaneous satellite rainfall estimates: Evaluation of BRAIN-TMI over West Africa. Quart. J. Roy. Meteor. Soc., 139, 894911, doi:10.1002/qj.1964.

    • Search Google Scholar
    • Export Citation
  • Kniffka, A., M. Stengel, M. Lockhoff, R. Bennartz, and R. Hollmann, 2014: Characteristics of cloud liquid water path from SEVIRI onboard the Meteosat Second Generation 2 satellite for several cloud types. Atmos. Meas. Tech., 7, 887905, doi:10.5194/amt-7-887-2014.

    • Search Google Scholar
    • Export Citation
  • Kothe, S., D. Lüthi, and B. Ahrens, 2014: Analysis of the West African monsoon system in the regional climate model COSMO-CLM. Int. J. Climatol., 34, 481493, doi:10.1002/joc.3702.

    • Search Google Scholar
    • Export Citation
  • Kucera, P. A., E. E. Ebert, F. Turk, V. Levizzani, D. Kirschbaum, F. J. Tapiador, A. Loew, and M. Borsche, 2013: Precipitation from space: Advancing Earth system science. Bull. Amer. Meteor. Soc., 94, 365375, doi:10.1175/BAMS-D-11-00171.1.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lau, W. K. M., K.-M. Kim, and M.-I. Lee, 2007: Characteristics of diurnal and seasonal cycles in global monsoon systems. J. Meteor. Soc. Japan, 85A, 403416, doi:10.2151/jmsj.85A.403.

    • Search Google Scholar
    • Export Citation
  • Lebel, T., and Coauthors, 2010: The AMMA field campaigns: Multiscale and multidisciplinary observations in the West African region. Quart. J. Roy. Meteor. Soc., 136, 833, doi:10.1002/qj.486.

    • Search Google Scholar
    • Export Citation
  • Mathon, V., H. Laurent, and T. Lebel, 2002: Mesoscale convective system rainfall in the Sahel. J. Appl. Meteor., 41, 10811092, doi:10.1175/1520-0450(2002)041<1081:MCSRIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Negri, A. J., R. F. Adler, and L. Xu, 2002a: A TRMM-calibrated infrared rainfall algorithm applied over Brazil. J. Geophys. Res., 107, 8048, doi:10.1029/2000JD000265.

    • Search Google Scholar
    • Export Citation
  • Negri, A. J., T. L. Bell, and L. Xu, 2002b: Sampling of the diurnal cycle of precipitation using TRMM. J. Atmos. Oceanic Technol., 19, 13331344, doi:10.1175/1520-0426(2002)019<1333:SOTDCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pfeifroth, U., R. Mueller, and B. Ahrens, 2013: Evaluation of satellite-based and reanalysis precipitation data in the tropical Pacific. J. Appl. Meteor. Climatol., 52, 634644, doi:10.1175/JAMC-D-12-049.1.

    • Search Google Scholar
    • Export Citation
  • Pierre, C., G. Bergametti, B. Marticorena, E. Mougin, T. Lebel, and A. Ali, 2011: Pluriannual comparisons of satellite based rainfall products over the Sahelian belt for seasonal vegetation modeling. J. Geophys. Res., 116, D18201, doi:10.1029/2011JD016115.

    • Search Google Scholar
    • Export Citation
  • Pohl, B., M. Rouault, and S. S. Roy, 2014: Simulation of the annual and diurnal cycles of rainfall over South Africa by a regional climate model. Climate Dyn., 43, 22072226, doi:10.1007/s00382-013-2046-8.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, K. L., S. L. Choi, M. D. Zuluaga, and R. A. Houze Jr., 2013: TRMM precipitation bias in extreme storms in South America. Geophys. Res. Lett., 40, 34573461, doi:10.1002/grl.50651.

    • Search Google Scholar
    • Export Citation
  • Reed, R. J., and K. D. Jaffe, 1981: Diurnal variation of summer convection over West Africa and the tropical eastern Atlantic during 1974 and 1978. Mon. Wea. Rev., 109, 25272534, doi:10.1175/1520-0493(1981)109<2527:DVOSCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Roca, R., P. Chambon, I. Jobard, P.-E. Kirstetter, M. Gosset, and J. C. Bergès, 2010: Comparing satellite and surface rainfall products over West Africa at meteorologically relevant scales during the AMMA campaign using error estimates. J. Appl. Meteor. Climatol., 49, 715731, doi:10.1175/2009JAMC2318.1.

    • Search Google Scholar
    • Export Citation
  • Sane, Y., and Coauthors, 2012: An analysis of the diurnal cycle of precipitation over Dakar using local rain-gauge data and a general circulation model. Quart. J. Roy. Meteor. Soc., 138, 21822195, doi:10.1002/qj.1932.

    • Search Google Scholar
    • Export Citation
  • Sapiano, M. R. P., and P. A. Arkin, 2009: An intercomparison and validation of high-resolution satellite precipitation estimates with 3-hourly gauge data. J. Hydrometeor., 10, 149166, doi:10.1175/2008JHM1052.1.

    • Search Google Scholar
    • Export Citation
  • Sato, T., H. Miura, M. Satoh, Y. N. Takayabu, and Y. Wang, 2009: Diurnal cycle of precipitation in the tropics simulated in a global cloud-resolving model. J. Climate, 22, 48094826, doi:10.1175/2009JCLI2890.1.

    • Search Google Scholar
    • Export Citation
  • Shinoda, M., T. Okatani, and M. Saloum, 1999: Diurnal variations of rainfall over Niger in the West African Sahel: A comparison between wet and drought years. Int. J. Climatol., 19, 8194, doi:10.1002/(SICI)1097-0088(199901)19:1<81::AID-JOC350>3.0.CO;2-F.

    • Search Google Scholar
    • Export Citation
  • Sorooshian, S., K.-l. Hsu, X. Gao, H. V. Gupta, B. Imam, and D. Braithwaite, 2000: Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Amer. Meteor. Soc., 81, 20352046, doi:10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stengel, M. S., A. K. Kniffka, J. F. M. Meirink, M. L. Lockhoff, J. T. Tan, and R. H. Hollmann, 2014: CLAAS: The CM SAF cloud property data set using SEVIRI. Atmos. Chem. Phys., 14, 42974311, doi:10.5194/acp-14-4297-2014.

    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., and Coauthors, 2012: Global precipitation measurement: Methods, datasets and applications. Atmos. Res., 104–105, 7097, doi:10.1016/j.atmosres.2011.10.021.

    • Search Google Scholar
    • Export Citation
  • Yang, G.-Y., and J. Slingo, 2001: The diurnal cycle in the tropics. Mon. Wea. Rev., 129, 784801, doi:10.1175/1520-0493(2001)129<0784:TDCITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 713 234 24
PDF Downloads 320 88 13