A Modeling Study of a Low-Level Jet along the Yun-Gui Plateau in South China

Ming-Yang He State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Ming-Yang He in
Current site
Google Scholar
PubMed
Close
,
Hong-Bo Liu State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Hong-Bo Liu in
Current site
Google Scholar
PubMed
Close
,
Bin Wang State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, and Center for Earth System Science, Tsinghua University, Beijing, China

Search for other papers by Bin Wang in
Current site
Google Scholar
PubMed
Close
, and
Da-Lin Zhang Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland

Search for other papers by Da-Lin Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, the three-dimensional structures and diurnal evolution of a typical low-level jet (LLJ) with a maximum speed of 24 m s−1 occurring in the 850–800-hPa layer are examined using both large-scale analysis and a high-resolution model simulation. The LLJ occurred on the eastern foothills of the Yun-Gui Plateau in south China from 1400 LST 29 June to 1400 LST 30 June 2003. The effects of surface radiative heating, topography, and latent heat release on the development of the LLJ case are also studied. Results show that a western Pacific Ocean subtropical high and a low pressure system on the respective southeast and northwest sides of the LLJ provide a favorable large-scale mean pressure pattern for the LLJ development. The LLJ reaches its peak intensity at 850 hPa near 0200 LST with wind directions veering from southerly before sunset to southwesterly at midnight. A hodograph at the LLJ core shows a complete diurnal cycle of the horizontal wind with a radius of 5.5 m s−1. It is found that in an LLJ coordinates system the along-LLJ geostrophic component regulates the distribution and 65% of the intensity of LLJ, whereas the ageostrophic component contributes to the clockwise rotation, thus leading to the formation and weakening of the LLJ during night- and daytime, respectively. Numerical sensitivity experiments confirm the surface radiative heating as the key factor in determining the formation of the nocturnal LLJ. The existence of the Yun-Gui Plateau, and the downstream condensational heating along the mei-yu front play secondary roles in the LLJ formation.

Denotes Open Access content.

Corresponding author address: Dr. Hong-Bo Liu, LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China. E-mail: hongboliu@mail.iap.ac.cn

Abstract

In this study, the three-dimensional structures and diurnal evolution of a typical low-level jet (LLJ) with a maximum speed of 24 m s−1 occurring in the 850–800-hPa layer are examined using both large-scale analysis and a high-resolution model simulation. The LLJ occurred on the eastern foothills of the Yun-Gui Plateau in south China from 1400 LST 29 June to 1400 LST 30 June 2003. The effects of surface radiative heating, topography, and latent heat release on the development of the LLJ case are also studied. Results show that a western Pacific Ocean subtropical high and a low pressure system on the respective southeast and northwest sides of the LLJ provide a favorable large-scale mean pressure pattern for the LLJ development. The LLJ reaches its peak intensity at 850 hPa near 0200 LST with wind directions veering from southerly before sunset to southwesterly at midnight. A hodograph at the LLJ core shows a complete diurnal cycle of the horizontal wind with a radius of 5.5 m s−1. It is found that in an LLJ coordinates system the along-LLJ geostrophic component regulates the distribution and 65% of the intensity of LLJ, whereas the ageostrophic component contributes to the clockwise rotation, thus leading to the formation and weakening of the LLJ during night- and daytime, respectively. Numerical sensitivity experiments confirm the surface radiative heating as the key factor in determining the formation of the nocturnal LLJ. The existence of the Yun-Gui Plateau, and the downstream condensational heating along the mei-yu front play secondary roles in the LLJ formation.

Denotes Open Access content.

Corresponding author address: Dr. Hong-Bo Liu, LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China. E-mail: hongboliu@mail.iap.ac.cn
Save
  • Archer, C. L., and M. Z. Jacobson, 2005: Evaluation of global wind power. J. Geophys. Res., 110, D12110, doi:10.1029/2004JD005462.

  • Ardanuy, P., 1979: On the observed diurnal oscillation of the Somali jet. Mon. Wea. Rev., 107, 16941700, doi:10.1175/1520-0493(1979)107<1694:OTODOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Arritt, R. W., T. D. Rink, M. Segal, D. P. Todey, C. A. Clark, M. J. Mitchell, and K. M. Labas, 1997: The Great Plains low-level jet during the warm season of 1993. Mon. Wea. Rev., 125, 21762192, doi:10.1175/1520-0493(1997)125<2176:TGPLLJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Blackadar, A. K., 1957: Boundary layer wind maxima and their significance for the growth of nocturnal inversions. Bull. Amer. Meteor. Soc., 38, 283290.

    • Search Google Scholar
    • Export Citation
  • Bonner, W. D., and J. Paegle, 1970: Diurnal variations in boundary layer winds over the south-central United States in summer. Mon. Wea. Rev., 98, 735744, doi:10.1175/1520-0493(1970)098<0735:DVIBLW>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model description and implementation. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, G. T.-J., C.-C. Wang, and L.-F. Lin, 2006: A diagnostic study of a retreating mei-yu front and the accompanying low-level jet formation and intensification. Mon. Wea. Rev., 134, 874896, doi:10.1175/MWR3099.1.

    • Search Google Scholar
    • Export Citation
  • Chen, Y.-L., X. A. Chen, and Y.-X. Zhang, 1994: A diagnostic study of the low-level jet during TAMEX 5. Mon. Wea. Rev., 122, 22572284, doi:10.1175/1520-0493(1994)122<2257:ADSOTL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ding, Y., 1994: Monsoons over China.Kluwer Academic, 419 pp.

  • Ding, Y., J.-J. Liu, Y. Sun, Y.-J. Liu, H.-H. He, and Y.-F. Song, 2007: A study of the synoptic-climatology of the Meiyu system in East Asia (in Chinese). Chin. J. Atmos. Sci., 31, 10821101.

    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., 1995: The summertime low-level jet over the Gulf of California. Mon. Wea. Rev., 123, 23342347, doi:10.1175/1520-0493(1995)123<2334:TSLLJO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Du, Y., and R. Rotunno, 2014: A simple analytical model of the nocturnal low-level jet over the Great Plains of the United States. J. Atmos. Sci., 71, 36743683, doi:10.1175/JAS-D-14-0060.1.

    • Search Google Scholar
    • Export Citation
  • Du, Y., Q. H. Zhang, Y. Yue, and Y. Yang, 2012: Characteristics of low-level jets in Shanghai during the 2008-2009 warm seasons as inferred from wind profiler radar data. J. Meteor. Soc. Japan, 90, 891903, doi:10.2151/jmsj.2012-603.

    • Search Google Scholar
    • Export Citation
  • Du, Y., Q. H. Zhang, Y.-L. Chen, Y. Zhao, and X. Wang, 2014: Numerical simulations of spatial distributions and diurnal variations of low-level jets in China during early summer. J. Climate, 27, 57475767, doi:10.1175/JCLI-D-13-00571.1.

    • Search Google Scholar
    • Export Citation
  • Du, Y., Y.-L. Chen, and Q. Zhang, 2015a: Numerical simulations of the boundary layer jet off the southeastern coast of China. Mon. Wea. Rev., 143, 12121231, doi:10.1175/MWR-D-14-00348.1.

    • Search Google Scholar
    • Export Citation
  • Du, Y., R. Rotunno, and Q. Zhang, 2015b: Analysis of WRF-simulated diurnal boundary layer winds in eastern China using a simple 1D model. J. Atmos. Sci., 72, 714727, doi:10.1175/JAS-D-14-0186.1.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Farquharson, J. S., 1939: The diurnal variation of wind over tropical Africa. Quart. J. Roy. Meteor. Soc., 65, 165184, doi:10.1002/qj.49706528004.

    • Search Google Scholar
    • Export Citation
  • Ferrier, B. S., Y. Lin, T. Black, E. Rogers, and G. DiMego, 2002: Implementation of a new grid-scale cloud and precipitation scheme in the NCEP Eta model. Preprints, 15th Conf. on Numerical Weather Prediction, San Antonio, TX, Amer. Meteor. Soc., 280–283.

  • Goualt, J., 1938: Vents en altitude a fort Lamy (Tchad). Ann. Phys. Globe France d’Outre-Mer, 5, 7091.

  • Higgins, R., Y. Yao, E. Yarosh, J. E. Janowiak, and K. Mo, 1997: Influence of the Great Plains low-level jet on summertime precipitation and moisture transport over the central United States. J. Climate, 10, 481507, doi:10.1175/1520-0442(1997)010<0481:IOTGPL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., 1967: The diurnal boundary layer wind oscillation above sloping terrain. Tellus, 19, 199205, doi:10.1111/j.2153-3490.1967.tb01473.x.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liechti, F., and E. Schaller, 1999: The use of low-level jets by migrating birds. Naturwissenschaften, 86, 549551, doi:10.1007/s001140050673.

    • Search Google Scholar
    • Export Citation
  • Liu, H., D.-L. Zhang, and B. Wang, 2008: Daily to submonthly weather and climate characteristics of the summer 1998 extreme rainfall over the Yangtze River basin. J. Geophys. Res., 113, D22101, doi:10.1029/2008JD010072.

    • Search Google Scholar
    • Export Citation
  • Liu, H., L.-J. Li, and B. Wang, 2012: Low-level jets over southeast China: The warm season climatology of the summer of 2003. Atmos. Oceanic Sci. Lett., 5, 394400, doi:10.1080/16742834.2012.11447017.

    • Search Google Scholar
    • Export Citation
  • Liu, X., and Y. Jiao, 2000: Sensitivity of the East Asian monsoon climate to the Tibetan Plateau uplift (in Chinese). Chin. J. Atmos. Sci., 24, 593607.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., 1980: Mesoscale convective complexes. Bull. Amer. Meteor. Soc., 61, 13741387, doi:10.1175/1520-0477(1980)061<1374:MCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Muñoz, R. C., and R. D. Garreaud, 2005: Dynamics of the low-level jet off the west coast of subtropical South America. Mon. Wea. Rev., 133, 36613677, doi:10.1175/MWR3074.1.

    • Search Google Scholar
    • Export Citation
  • Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397407, doi:10.1007/s10546-005-9030-8.

    • Search Google Scholar
    • Export Citation
  • Qian, J.-H., W.-K. Tao, and K. Lau, 2004: Mechanisms for torrential rain associated with the mei-yu development during SCSMEX 1998. Mon. Wea. Rev., 132, 327, doi:10.1175/1520-0493(2004)132<0003:MFTRAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rife, D. L., J. O. Pinto, A. J. Monaghan, C. A. Davis, and J. R. Hannan, 2010: Global distribution and characteristics of diurnally varying low-level jets. J. Climate, 23, 50415064, doi:10.1175/2010JCLI3514.1.

    • Search Google Scholar
    • Export Citation
  • Rogers, E., T. Black, B. Ferrier, Y. Lin, D. Parrish, and G. DiMego, 2001: Changes to the NCEP Meso Eta Analysis and Forecast System: Increase in resolution, new cloud microphysics, modified precipitation assimilation, modified 3DVAR analysis. NWS Tech. Procedures Bulletin. [Available online at http://www.emc.ncep.noaa.gov/mmb/mmbpll/eta12tpb/.]

  • Saulo, C., J. Ruiz, and Y. G. Skabar, 2007: Synergism between the low-level jet and organized convection at its exit region. Mon. Wea. Rev., 135, 13101326, doi:10.1175/MWR3317.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN–475+STR, 113 pp. [Available online at http://www2.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

  • Stensrud, D. J., 1996: Importance of low-level jets to climate: A review. J. Climate, 9, 16981711, doi:10.1175/1520-0442(1996)009<1698:IOLLJT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Storm, B., J. Dudhia, S. Basu, A. Swift, and I. Giammanco, 2008: Evaluation of the Weather Research and Forecasting model on forecasting low‐level jets: Implications for wind energy. Wind Energy, 12, 8190, doi:10.1002/we.288.

    • Search Google Scholar
    • Export Citation
  • Sun, S., and G. Zhai, 1980: On the instability of the low level jet and its trigger function for the occurrence of heavy rain-storms (in Chinese). Sci. Atmos. Sin., 4, 327337.

    • Search Google Scholar
    • Export Citation
  • Sun, S., and D. Lorenzo, 1985: Influence of Tibetan Plateau on low level jet in East Asia. Sci. Sin., 53B, 6881.

  • Tao, S. Y., 1980: Rainstorms in China (in Chinese). Science Press, 225 pp.

  • Taubman, B. F., L. T. Marufu, C. A. Piety, B. G. Doddridge, J. W. Stehr, and R. R. Dickerson, 2004: Airborne characterization of the chemical, optical, and meteorological properties, and origins of a combined ozone-haze episode over the eastern United States. J. Atmos. Sci., 61, 17811793, doi:10.1175/1520-0469(2004)061<1781:ACOTCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thiébaux, J., E. Rogers, W. Wang, and B. Katz, 2003: A new high-resolution blended real-time global sea surface temperature analysis. Bull. Amer. Meteor. Soc., 84, 645656, doi:10.1175/BAMS-84-5-645.

    • Search Google Scholar
    • Export Citation
  • Van de Wiel, B. J., A. Moene, G. Steeneveld, P. Baas, F. Bosveld, and A. Holtslag, 2010: A conceptual view on inertial oscillations and nocturnal low-level jets. J. Atmos. Sci., 67, 26792689, doi:10.1175/2010JAS3289.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., K. Gao, and G. Zhai, 2003: A mesoscale numerical simulation of low level jet related with the southwest vortex (in Chinese). Chin. J. Atmos. Sci., 27, 7585.

    • Search Google Scholar
    • Export Citation
  • Weaver, S. J., and S. Nigam, 2008: Variability of the Great Plains low-level jet: Large-scale circulation context and hydroclimate impacts. J. Climate, 21, 15321551, doi:10.1175/2007JCLI1586.1.

    • Search Google Scholar
    • Export Citation
  • Yu, R., T. Zhou, A. Xiong, Y. Zhu, and J. Li, 2007: Diurnal variations of summer precipitation over contiguous China. Geophys. Res. Lett., 34, L01704, doi:10.1029/2006GL028129.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., and J. M. Fritsch, 1986: Numerical simulation of the meso-β scale structure and evolution of the 1977 Johnstown flood. Part I: Model description and verification. J. Atmos. Sci., 43, 19131943, doi:10.1175/1520-0469(1986)043<1913:NSOTMS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, D.-L., S. Zhang, and S. J. Weaver, 2006: Low-level jets over the mid-Atlantic states: Warm-season climatology and a case study. J. Appl. Meteor., 45, 194209, doi:10.1175/JAM2313.1.

    • Search Google Scholar
    • Export Citation
  • Zhao, P., and X. Zhou, 2001: Formation of low-level meso-scale southwest jet during seasonal rainfall. Prog. Nat. Sci., 11, 272279.

  • Zhao, Y., 2012: Numerical investigation of a localized extremely heavy rainfall event in complex topographic area during midsummer. Atmos. Res., 113, 2239, doi:10.1016/j.atmosres.2012.04.018.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1082 506 48
PDF Downloads 408 110 20