Biological and Environmental Controls on Evaporative Fractions at AmeriFlux Sites

Chunlüe Zhou State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, and Joint Center for Global Change Studies, Beijing, China

Search for other papers by Chunlüe Zhou in
Current site
Google Scholar
PubMed
Close
and
Kaicun Wang State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, and Joint Center for Global Change Studies, Beijing, China

Search for other papers by Kaicun Wang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Knowledge of the evaporative fraction (EF: the ratio of latent heat flux to the sum of sensible and latent heat fluxes) and its controls is particularly important for accurate estimates of water flux, heat exchange, and ecosystem response to climatic changes. In this study, the biological and environmental controls on monthly EF were evaluated across 81 AmeriFlux sites, mainly in North America, for 2000–12. The land-cover types of these sites include forest, shrubland, grassland, and cropland, and the local climates vary from humid to arid. The results show that vegetation coverage, indicated by the normalized difference vegetation index (NDVI), has the best agreement with EF (site-averaged partial correlation coefficient ρ = 0.53; significance level p < 0.05) because of vegetation transpiration demand. The minimum air temperature is closely related to EF (site-averaged ρ = 0.51; p < 0.05) because of the inhibition of respiratory enzyme activity. Relative humidity, an indicator of surface aridity, shows a significant positive correlation with EF (site-averaged ρ = 0.46; p < 0.05). The impacts of wind speed and diurnal air temperature range on EF depend on land-cover types and are strong over grasslands and cropland. From these findings, empirical methods were established to predict monthly EF using meteorological data and NDVI. Correlation coefficients between EF estimates and observations range from 0.80 to 0.93, with root-mean-square errors varying from 0.09 to 0.12. This study demonstrates the varying controls on EF across different landscapes and enhances understanding of EF and its dynamics under changing climates.

Denotes Open Access content.

Corresponding author address: Dr. Kaicun Wang, State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China. E-mail: kcwang@bnu.edu.cn

Abstract

Knowledge of the evaporative fraction (EF: the ratio of latent heat flux to the sum of sensible and latent heat fluxes) and its controls is particularly important for accurate estimates of water flux, heat exchange, and ecosystem response to climatic changes. In this study, the biological and environmental controls on monthly EF were evaluated across 81 AmeriFlux sites, mainly in North America, for 2000–12. The land-cover types of these sites include forest, shrubland, grassland, and cropland, and the local climates vary from humid to arid. The results show that vegetation coverage, indicated by the normalized difference vegetation index (NDVI), has the best agreement with EF (site-averaged partial correlation coefficient ρ = 0.53; significance level p < 0.05) because of vegetation transpiration demand. The minimum air temperature is closely related to EF (site-averaged ρ = 0.51; p < 0.05) because of the inhibition of respiratory enzyme activity. Relative humidity, an indicator of surface aridity, shows a significant positive correlation with EF (site-averaged ρ = 0.46; p < 0.05). The impacts of wind speed and diurnal air temperature range on EF depend on land-cover types and are strong over grasslands and cropland. From these findings, empirical methods were established to predict monthly EF using meteorological data and NDVI. Correlation coefficients between EF estimates and observations range from 0.80 to 0.93, with root-mean-square errors varying from 0.09 to 0.12. This study demonstrates the varying controls on EF across different landscapes and enhances understanding of EF and its dynamics under changing climates.

Denotes Open Access content.

Corresponding author address: Dr. Kaicun Wang, State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing, 100875, China. E-mail: kcwang@bnu.edu.cn
Save
  • Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998: Crop evapotranspiration: Guidelines for computing crop water requirements. U.N. Food and Agriculture Organization Irrigation and Drainage Paper 56, 300 pp. [Available online at http://www.fao.org/docrep/x0490e/x0490e00.htm.]

  • Amidan, B. G., T. A. Ferryman, and S. K. Cooley, 2005: Data outlier detection using the Chebyshev theorem. Proc. 2005 IEEE Aerospace Conf., Big Sky, MT, IEEE, 38143819, doi:10.1109/AERO.2005.1559688.

  • Bailey, B., J. Montero, C. Biel, D. Wilkinson, A. Anton, and O. Jolliet, 1993: Transpiration of Ficus benjamina: Comparison of measurements with predictions of the Penman–Monteith model and a simplified version. Agric. For. Meteor., 65, 229243, doi:10.1016/0168-1923(93)90006-4.

    • Search Google Scholar
    • Export Citation
  • Baldocchi, D., and Coauthors, 2001: FLUXNET: A new tool to study the temporal and spatial variability of ecosystem–scale carbon dioxide, water vapor, and energy flux densities. Bull. Amer. Meteor. Soc., 82, 24152434, doi:10.1175/1520-0477(2001)082<2415:FANTTS>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barr, J. G., V. Engel, T. J. Smith, and J. D. Fuentes, 2012: Hurricane disturbance and recovery of energy balance, CO2 fluxes and canopy structure in a mangrove forest of the Florida Everglades. Agric. For. Meteor., 153, 5466, doi:10.1016/j.agrformet.2011.07.022.

    • Search Google Scholar
    • Export Citation
  • Best, M. J., and Coauthors, 2015: The plumbing of land surface models: Benchmarking model performance. J. Hydrometeor., 16, 14251442, doi:10.1175/JHM-D-14-0158.1.

    • Search Google Scholar
    • Export Citation
  • Billesbach, D. P., 2011: Estimating uncertainties in individual eddy covariance flux measurements: A comparison of methods and a proposed new method. Agric. For. Meteor., 151, 394405, doi:10.1016/j.agrformet.2010.12.001.

    • Search Google Scholar
    • Export Citation
  • Bowling, D. R., S. Bethers-Marchetti, C. K. Lunch, E. E. Grote, and J. Belnap, 2010: Carbon, water, and energy fluxes in a semiarid cold desert grassland during and following multiyear drought. J. Geophys. Res., 115, G04026, doi:10.1029/2010JG001322.

    • Search Google Scholar
    • Export Citation
  • Brunsell, N. A., J. M. Ham, and C. E. Owensby, 2008: Assessing the multi-resolution information content of remotely sensed variables and elevation for evapotranspiration in a tall-grass prairie environment. Remote Sens. Environ., 112, 29772987, doi:10.1016/j.rse.2008.02.002.

    • Search Google Scholar
    • Export Citation
  • Brutsaert, W., and M. Sugita, 1992: Application of self-preservation in the diurnal evolution of the surface energy budget to determine daily evaporation. J. Geophys. Res., 97, 18 37718 382, doi:10.1029/92JD00255.

    • Search Google Scholar
    • Export Citation
  • Bucci, S. J., F. G. Scholz, G. Goldstein, W. A. Hoffmann, F. C. Meinzer, A. C. Franco, T. Giambelluca, and F. Miralles-Wilhelm, 2008: Controls on stand transpiration and soil water utilization along a tree density gradient in a neotropical savanna. Agric. For. Meteor., 148, 839849, doi:10.1016/j.agrformet.2007.11.013.

    • Search Google Scholar
    • Export Citation
  • Cavanaugh, M. L., S. A. Kurc, and R. L. Scott, 2011: Evapotranspiration partitioning in semiarid shrubland ecosystems: A two-site evaluation of soil moisture control on transpiration. Ecohydrology, 4, 671681, doi:10.1002/eco.157.

    • Search Google Scholar
    • Export Citation
  • Cerveny, R. S., J. Lawrimore, R. Edwards, and C. Landsea, 2007: Extreme weather records: Compilation, adjudication, and publication. Bull. Amer. Meteor. Soc., 88, 853860, doi:10.1175/BAMS-88-6-853.

    • Search Google Scholar
    • Export Citation
  • Chang, X., W. Zhao, Z. Zhang, and Y. Su, 2006: Sap flow and tree conductance of shelter-belt in arid region of China. Agric. For. Meteor., 138, 132141, doi:10.1016/j.agrformet.2006.04.003.

    • Search Google Scholar
    • Export Citation
  • Chatterjee, S., and B. Price, 1977: Regression Analysis by Example. John Wiley and Sons, 228 pp.

  • Chen, J., P. Jönsson, M. Tamura, Z. Gu, B. Matsushita, and L. Eklundh, 2004: A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ., 91, 332344, doi:10.1016/j.rse.2004.03.014.

    • Search Google Scholar
    • Export Citation
  • Clark, K. L., and Coauthors, 2009: Decision support tools to improve the effectiveness of hazardous fuel reduction treatments in the New Jersey Pine Barrens. Int. J. Wildland Fire, 18, 268277, doi:10.1071/WF08080.

    • Search Google Scholar
    • Export Citation
  • Clark, K. L., N. Skowronski, and J. Hom, 2010: Invasive insects impact forest carbon dynamics. Global Change Biol., 16, 88101, doi:10.1111/j.1365-2486.2009.01983.x.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., P. Cohen, S. G. West, and L. S. Aiken, 2013: Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences. Routledge, 703 pp.

  • Crago, R. D., 1996: Conservation and variability of the evaporative fraction during the daytime. J. Hydrol., 180, 173194, doi:10.1016/0022-1694(95)02903-6.

    • Search Google Scholar
    • Export Citation
  • Curtis, P. S., P. J. Hanson, P. Bolstad, C. Barford, J. Randolph, H. Schmid, and K. B. Wilson, 2002: Biometric and eddy-covariance based estimates of annual carbon storage in five eastern North American deciduous forests. Agric. For. Meteor., 113, 319, doi:10.1016/S0168-1923(02)00099-0.

    • Search Google Scholar
    • Export Citation
  • Desai, A. R., P. V. Bolstad, B. D. Cook, K. J. Davis, and E. V. Carey, 2005: Comparing net ecosystem exchange of carbon dioxide between an old-growth and mature forest in the upper Midwest, USA. Agric. For. Meteor., 128, 3355, doi:10.1016/j.agrformet.2004.09.005.

    • Search Google Scholar
    • Export Citation
  • Dixon, M., and J. Grace, 1984: Effect of wind on the transpiration of young trees. Ann. Bot., 53, 811819.

  • Domec, J.-C., A. Noormets, J. S. King, G. Sun, S. G. McNulty, M. J. Gavazzi, J. L. Boggs, and E. A. Treasure, 2009: Decoupling the influence of leaf and root hydraulic conductances on stomatal conductance and its sensitivity to vapour pressure deficit as soil dries in a drained loblolly pine plantation. Plant Cell Environ., 32, 980991, doi:10.1111/j.1365-3040.2009.01981.x.

    • Search Google Scholar
    • Export Citation
  • Dore, S., and Coauthors, 2008: Long-term impact of a stand-replacing fire on ecosystem CO2 exchange of a ponderosa pine forest. Global Change Biol., 14, 18011820, doi:10.1111/j.1365-2486.2008.01613.x.

    • Search Google Scholar
    • Export Citation
  • Dore, S., M. Montes-Helu, S. C. Hart, B. A. Hungate, G. W. Koch, J. B. Moon, A. J. Finkral, and T. E. Kolb, 2012: Recovery of ponderosa pine ecosystem carbon and water fluxes from thinning and stand-replacing fire. Global Change Biol., 18, 31713185, doi:10.1111/j.1365-2486.2012.02775.x.

    • Search Google Scholar
    • Export Citation
  • Dragoni, D., H. P. Schmid, C. S. B. Grimmond, and H. W. Loescher, 2007: Uncertainty of annual net ecosystem productivity estimated using eddy covariance flux measurements. J. Geophys. Res., 112, D17102, doi:10.1029/2006JD008149.

    • Search Google Scholar
    • Export Citation
  • Euskirchen, E. S., A. D. McGuire, and F. S. Chapin, 2007: Energy feedbacks of northern high-latitude ecosystems to the climate system due to reduced snow cover during 20th century warming. Global Change Biol., 13, 24252438, doi:10.1111/j.1365-2486.2007.01450.x.

    • Search Google Scholar
    • Export Citation
  • Friedl, M. A., 2002: Forward and inverse modeling of land surface energy balance using surface temperature measurements. Remote Sens. Environ., 79, 344354, doi:10.1016/S0034-4257(01)00284-X.

    • Search Google Scholar
    • Export Citation
  • Friedl, M. A., D. Sulla-Menashe, B. Tan, A. Schneider, N. Ramankutty, A. Sibley, and X. Huang, 2010: MODIS collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ., 114, 168182, doi:10.1016/j.rse.2009.08.016.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., D. Entekhabi, A. Chehbouni, G. Boulet, and B. Duchemin, 2007: Analysis of evaporative fraction diurnal behaviour. Agric. For. Meteor., 143, 1329, doi:10.1016/j.agrformet.2006.11.002.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., D. Entekhabi, and J. Polcher, 2011: The diurnal behavior of evaporative fraction in the soil–vegetation–atmospheric boundary layer continuum. J. Hydrometeor., 12, 15301546, doi:10.1175/2011JHM1261.1.

    • Search Google Scholar
    • Export Citation
  • Gholz, H. L., and K. L. Clark, 2002: Energy exchange across a chronosequence of slash pine forests in Florida. Agric. For. Meteor., 112, 87102, doi:10.1016/S0168-1923(02)00059-X.

    • Search Google Scholar
    • Export Citation
  • Gilmanov, T. G., L. L. Tieszen, B. K. Wylie, L. B. Flanagan, A. B. Frank, M. R. Haferkamp, T. P. Meyers, and J. A. Morgan, 2005: Integration of CO2 flux and remotely-sensed data for primary production and ecosystem respiration analyses in the northern Great Plains: Potential for quantitative spatial extrapolation. Global Ecol. Biogeogr., 14, 271292, doi:10.1111/j.1466-822X.2005.00151.x.

    • Search Google Scholar
    • Export Citation
  • Goulden, M. L., G. C. Winston, A. M. S. McMillan, M. E. Litvak, E. L. Read, A. V. Rocha, and J. Rob Elliot, 2006: An eddy covariance mesonet to measure the effect of forest age on land–atmosphere exchange. Global Change Biol., 12, 21462162, doi:10.1111/j.1365-2486.2006.01251.x.

    • Search Google Scholar
    • Export Citation
  • Gu, L., and Coauthors, 2007: Influences of biomass heat and biochemical energy storages on the land surface fluxes and radiative temperature. J. Geophys. Res., 112, D02107, doi:10.1029/2006JD007425.

    • Search Google Scholar
    • Export Citation
  • Gutiérrez, M. V., F. C. Meinzer, and D. A. Grantz, 1994: Regulation of transpiration in coffee hedgerows: Covariation of environmental variables and apparent responses of stomata to wind and humidity. Plant Cell Environ., 17, 13051313, doi:10.1111/j.1365-3040.1994.tb00532.x.

    • Search Google Scholar
    • Export Citation
  • Hall, F. G., K. F. Huemmrich, S. J. Goetz, P. J. Sellers, and J. E. Nickeson, 1992: Satellite remote sensing of surface energy balance: Success, failures, and unresolved issues in FIFE. J. Geophys. Res., 97, 19 06119 089, doi:10.1029/92JD02189.

    • Search Google Scholar
    • Export Citation
  • Hardiman, B. S., G. Bohrer, C. M. Gough, C. S. Vogel, and P. S. Curtis, 2011: The role of canopy structural complexity in wood net primary production of a maturing northern deciduous forest. Ecology, 92, 18181827, doi:10.1890/10-2192.1.

    • Search Google Scholar
    • Export Citation
  • Hernandez-Ramirez, G., J. L. Hatfield, T. B. Parkin, T. J. Sauer, and J. H. Prueger, 2011: Carbon dioxide fluxes in corn–soybean rotation in the midwestern U.S.: Inter- and intra-annual variations, and biophysical controls. Agric. For. Meteor., 151, 18311842, doi:10.1016/j.agrformet.2011.07.017.

    • Search Google Scholar
    • Export Citation
  • Hiller, R., J. McFadden, and N. Kljun, 2011: Interpreting CO2 fluxes over a suburban lawn: The influence of traffic emissions. Bound.-Layer Meteor., 138, 215230, doi:10.1007/s10546-010-9558-0.

    • Search Google Scholar
    • Export Citation
  • Hollinger, D. Y., S. M. Goltz, E. A. Davidson, J. T. Lee, K. Tu, and H. T. Valentine, 1999: Seasonal patterns and environmental control of carbon dioxide and water vapour exchange in an ecotonal boreal forest. Global Change Biol., 5, 891902, doi:10.1046/j.1365-2486.1999.00281.x.

    • Search Google Scholar
    • Export Citation
  • Hollinger, D. Y., and Coauthors, 2004: Spatial and temporal variability in forest–atmosphere CO2 exchange. Global Change Biol., 10, 16891706, doi:10.1111/j.1365-2486.2004.00847.x.

    • Search Google Scholar
    • Export Citation
  • Hollinger, D. Y., and Coauthors, 2010: Albedo estimates for land surface models and support for a new paradigm based on foliage nitrogen concentration. Global Change Biol., 16, 696710, doi:10.1111/j.1365-2486.2009.02028.x.

    • Search Google Scholar
    • Export Citation
  • Hollinger, S. E., C. J. Bernacchi, and T. P. Meyers, 2005: Carbon budget of mature no-till ecosystem in north central region of the United States. Agric. For. Meteor., 130, 5969, doi:10.1016/j.agrformet.2005.01.005.

    • Search Google Scholar
    • Export Citation
  • Horn, J., and K. Schulz, 2010: Post-processing analysis of MODIS leaf area index subsets. J. Appl. Remote Sens., 4, 043557043525, doi:10.1117/1.3524265.

    • Search Google Scholar
    • Export Citation
  • Hu, Z., and Coauthors, 2009: Partitioning of evapotranspiration and its controls in four grassland ecosystems: Application of a two-source model. Agric. For. Meteor., 149, 14101420, doi:10.1016/j.agrformet.2009.03.014.

    • Search Google Scholar
    • Export Citation
  • Hutyra, L. R., J. W. Munger, E. Hammond-Pyle, S. R. Saleska, N. Restrepo-Coupe, B. C. Daube, P. B. de Camargo, and S. C. Wofsy, 2008: Resolving systematic errors in estimates of net ecosystem exchange of CO2 and ecosystem respiration in a tropical forest biome. Agric. For. Meteor., 148, 12661279, doi:10.1016/j.agrformet.2008.03.007.

    • Search Google Scholar
    • Export Citation
  • Jastrow, J. D., R. M. Miller, and C. E. Owensby, 2000: Long-term effects of elevated atmospheric CO2 on below-ground biomass and transformations to soil organic matter in grassland. Plant Soil, 224, 8597, doi:10.1023/A:1004771805022.

    • Search Google Scholar
    • Export Citation
  • Jenkins, J. P., A. D. Richardson, B. H. Braswell, S. V. Ollinger, D. Y. Hollinger, and M. L. Smith, 2007: Refining light-use efficiency calculations for a deciduous forest canopy using simultaneous tower-based carbon flux and radiometric measurements. Agric. For. Meteor., 143, 6479, doi:10.1016/j.agrformet.2006.11.008.

    • Search Google Scholar
    • Export Citation
  • Jiang, L., S. Islam, and T. N. Carlson, 2004: Uncertainties in latent heat flux measurement and estimation: Implications for using a simplified approach with remote sensing data. Can. J. Remote Sens., 30, 769787, doi:10.5589/m04-038.

    • Search Google Scholar
    • Export Citation
  • Jung, M., M. Reichstein, and A. Bondeau, 2009: Towards global empirical upscaling of FLUXNET eddy covariance observations: Validation of a model tree ensemble approach using a biosphere model. Biogeosciences, 6, 20012013, doi:10.5194/bg-6-2001-2009.

    • Search Google Scholar
    • Export Citation
  • Jung, M., and Coauthors, 2010: Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature, 467, 951954, doi:10.1038/nature09396.

    • Search Google Scholar
    • Export Citation
  • Kalma, J. D., T. R. McVicar, and M. F. McCabe, 2008: Estimating land surface evaporation: A review of methods using remotely sensed surface temperature data. Surv. Geophys., 29, 421469, doi:10.1007/s10712-008-9037-z.

    • Search Google Scholar
    • Export Citation
  • Kim, D., R. Oren, A. C. Oishi, C.-I. Hsieh, N. Phillips, K. A. Novick, and P. C. Stoy, 2014: Sensitivity of stand transpiration to wind velocity in a mixed broadleaved deciduous forest. Agric. For. Meteor., 187, 6271, doi:10.1016/j.agrformet.2013.11.013.

    • Search Google Scholar
    • Export Citation
  • Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel, 2006: World map of the Köppen-Geiger climate classification updated. Meteor. Z., 15, 259263, doi:10.1127/0941-2948/2006/0130.

    • Search Google Scholar
    • Export Citation
  • Kra, E. Y., 2010: An empirical simplification of the temperature Penman–Monteith model for the tropics. J. Agric. Sci., 2, doi:10.5539/jas.v2n1p162.

    • Search Google Scholar
    • Export Citation
  • Krishnan, P., T. P. Meyers, R. L. Scott, L. Kennedy, and M. Heuer, 2012: Energy exchange and evapotranspiration over two temperate semi-arid grasslands in North America. Agric. For. Meteor., 153, 3144, doi:10.1016/j.agrformet.2011.09.017.

    • Search Google Scholar
    • Export Citation
  • Kurc, S. A., and L. M. Benton, 2010: Digital image-derived greenness links deep soil moisture to carbon uptake in a creosotebush-dominated shrubland. J. Arid Environ., 74, 585594, doi:10.1016/j.jaridenv.2009.10.003.

    • Search Google Scholar
    • Export Citation
  • Kustas, W., and M. Anderson, 2009: Advances in thermal infrared remote sensing for land surface modeling. Agric. For. Meteor., 149, 20712081, doi:10.1016/j.agrformet.2009.05.016.

    • Search Google Scholar
    • Export Citation
  • Lei, H., Z. Zhi-Shan, and L. Xin-Rong, 2010: Sap flow of Artemisia ordosica and the influence of environmental factors in a revegetated desert area: Tengger Desert, China. Hydrol. Processes, 24, 12481253, doi:10.1002/hyp.7584.

    • Search Google Scholar
    • Export Citation
  • Lhomme, J.-P., and E. Elguero, 1999: Examination of evaporative fraction diurnal behaviour using a soil-vegetation model coupled with a mixed-layer model. Hydrol. Earth Syst. Sci., 3, 259270, doi:10.5194/hess-3-259-1999.

    • Search Google Scholar
    • Export Citation
  • Liu, H., and J. T. Randerson, 2008: Interannual variability of surface energy exchange depends on stand age in a boreal forest fire chronosequence. J. Geophys. Res., 113, G01006, doi:10.1029/2007JG000483.

    • Search Google Scholar
    • Export Citation
  • Lokupitiya, E., and Coauthors, 2009: Incorporation of crop phenology in Simple Biosphere Model (SiBcrop) to improve land–atmosphere carbon exchanges from croplands. Biogeosciences, 6, 969986, doi:10.5194/bg-6-969-2009.

    • Search Google Scholar
    • Export Citation
  • Luo, H., W. C. Oechel, S. J. Hastings, R. Zulueta, Y. Qian, and H. Kwon, 2007: Mature semiarid chaparral ecosystems can be a significant sink for atmospheric carbon dioxide. Global Change Biol., 13, 386396, doi:10.1111/j.1365-2486.2006.01299.x.

    • Search Google Scholar
    • Export Citation
  • Ma, S., D. D. Baldocchi, L. Xu, and T. Hehn, 2007: Inter-annual variability in carbon dioxide exchange of an oak/grass savanna and open grassland in California. Agric. For. Meteor., 147, 157171, doi:10.1016/j.agrformet.2007.07.008.

    • Search Google Scholar
    • Export Citation
  • Matamala, R., J. D. Jastrow, R. M. Miller, and C. T. Garten, 2008: Temporal changes in C and N stocks of restored prairie: Implications for C sequestration strategies. Ecol. Appl., 18, 14701488, doi:10.1890/07-1609.1.

    • Search Google Scholar
    • Export Citation
  • Maximov, T., T. Ohta, and A. J. Dolman, 2008: Water and energy exchange in east Siberian forest: A synthesis. Agric. For. Meteor., 148, 20132018, doi:10.1016/j.agrformet.2008.10.004.

    • Search Google Scholar
    • Export Citation
  • Meyers, T. P., and S. E. Hollinger, 2004: An assessment of storage terms in the surface energy balance of maize and soybean. Agric. For. Meteor., 125, 105115, doi:10.1016/j.agrformet.2004.03.001.

    • Search Google Scholar
    • Export Citation
  • Molotch, N. P., P. D. Brooks, S. P. Burns, M. Litvak, R. K. Monson, J. R. McConnell, and K. Musselman, 2009: Ecohydrological controls on snowmelt partitioning in mixed-conifer sub-alpine forests. Ecohydrology, 2, 129142, doi:10.1002/eco.48.

    • Search Google Scholar
    • Export Citation
  • Monteith, J., 1965: Evaporation and environment. Symp. Soc. Exp. Biol., 19, 205224.

  • Montgomery, D. C., E. A. Peck, and G. G. Vining, 2012: Introduction to Linear Regression Analysis. John Wiley and Sons, 672 pp.

  • Mu, Q., F. A. Heinsch, M. Zhao, and S. W. Running, 2007a: Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ., 111, 519536, doi:10.1016/j.rse.2007.04.015.

    • Search Google Scholar
    • Export Citation
  • Mu, Q., M. S. Zhao, F. A. Heinsch, M. L. Liu, H. Q. Tian, and S. W. Running, 2007b: Evaluating water stress controls on primary production in biogeochemical and remote sensing based models. J Geophys Res., 112, G01012, doi:10.1029/2006JG000179.

    • Search Google Scholar
    • Export Citation
  • Mu, Q., M. S. Zhao, and S. W. Running, 2011: Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens. Environ., 115, 17811800, doi:10.1016/j.rse.2011.02.019.

    • Search Google Scholar
    • Export Citation
  • Muldavin, E., D. Moore, S. Collins, K. Wetherill, and D. Lightfoot, 2008: Aboveground net primary production dynamics in a northern Chihuahuan Desert ecosystem. Oecologia, 155, 123132, doi:10.1007/s00442-007-0880-2.

    • Search Google Scholar
    • Export Citation
  • Nichols, W. E., and R. H. Cuenca, 1993: Evaluation of the evaporative fraction for parameterization of the surface energy balance. Water Resour. Res., 29, 36813690, doi:10.1029/93WR01958.

    • Search Google Scholar
    • Export Citation
  • Norman, J. M., W. P. Kustas, J. H. Prueger, and G. R. Diak, 2000: Surface flux estimation using radiometric temperature: A dual temperature-difference method to minimize measurement errors. Water Resour. Res., 36, 22632274, doi:10.1029/2000WR900033.

    • Search Google Scholar
    • Export Citation
  • Peng, J., M. Borsche, Y. Liu, and A. Loew, 2013: How representative are instantaneous evaporative fraction measurements of daytime fluxes? Hydrol. Earth Syst. Sci., 17, 39133919, doi:10.5194/hess-17-3913-2013.

    • Search Google Scholar
    • Export Citation
  • Powell, T. L., H. L. Gholz, K. L. Clark, G. Starr, W. P. Cropper, and T. A. Martin, 2008: Carbon exchange of a mature, naturally regenerated pine forest in north Florida. Global Change Biol., 14, 25232538, doi:10.1111/j.1365-2486.2008.01675.x.

    • Search Google Scholar
    • Export Citation
  • Priestley, C., and R. Taylor, 1972: On the assessment of surface heat flux and evaporation using large-scale parameters. Mon. Wea. Rev., 100, 8192, doi:10.1175/1520-0493(1972)100<0081:OTAOSH>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ricciuto, D. M., M. P. Butler, K. J. Davis, B. D. Cook, P. S. Bakwin, A. Andrews, and R. M. Teclaw, 2008: Causes of interannual variability in ecosystem–atmosphere CO2 exchange in a northern Wisconsin forest using a Bayesian model calibration. Agric. For. Meteor., 148, 309327, doi:10.1016/j.agrformet.2007.08.007.

    • Search Google Scholar
    • Export Citation
  • Rivas, R., and V. Caselles, 2004: A simplified equation to estimate spatial reference evaporation from remote sensing-based surface temperature and local meteorological data. Remote Sens. Environ., 93, 6876, doi:10.1016/j.rse.2004.06.021.

    • Search Google Scholar
    • Export Citation
  • Román, M. O., and Coauthors, 2009: The MODIS (collection V005) BRDF/albedo product: Assessment of spatial representativeness over forested landscapes. Remote Sens. Environ., 113, 24762498, doi:10.1016/j.rse.2009.07.009.

    • Search Google Scholar
    • Export Citation
  • Saugier, B., A. Granier, J. Y. Pontailler, E. Dufrêne, and D. D. Baldocchi, 1997: Transpiration of a boreal pine forest measured by branch bag, sap flow and micrometeorological methods. Tree Physiol., 17, 511519, doi:10.1093/treephys/17.8-9.511.

    • Search Google Scholar
    • Export Citation
  • Schmidt, A., C. Hanson, J. Kathilankal, and B. E. Law, 2011: Classification and assessment of turbulent fluxes above ecosystems in North-America with self-organizing feature map networks. Agric. For. Meteor., 151, 508520, doi:10.1016/j.agrformet.2010.12.009.

    • Search Google Scholar
    • Export Citation
  • Scott, R. L., 2010: Using watershed water balance to evaluate the accuracy of eddy covariance evaporation measurements for three semiarid ecosystems. Agric. For. Meteor., 150, 219225, doi:10.1016/j.agrformet.2009.11.002.

    • Search Google Scholar
    • Export Citation
  • Shaw, D., J. Franklin, K. Bible, J. Klopatek, E. Freeman, S. Greene, and G. Parker, 2004: Ecological setting of the Wind River old-growth forest. Ecosystems, 7, 427439, doi:10.1007/s10021-004-0135-6.

    • Search Google Scholar
    • Export Citation
  • Shuttleworth, W. J., 1991: Insight from large-scale observational studies of land/atmosphere interactions. Surv. Geophys., 12, 330, doi:10.1007/BF01903410.