Quantifying Marine Boundary Layer Water Vapor beneath Low Clouds with Near-Infrared and Microwave Imagery

Luis Millán Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by Luis Millán in
Current site
Google Scholar
PubMed
Close
,
M. Lebsock Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by M. Lebsock in
Current site
Google Scholar
PubMed
Close
,
E. Fishbein Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by E. Fishbein in
Current site
Google Scholar
PubMed
Close
,
P. Kalmus Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by P. Kalmus in
Current site
Google Scholar
PubMed
Close
, and
J. Teixeira Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California

Search for other papers by J. Teixeira in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study investigates the synergy of collocated microwave radiometry and near-infrared imagery to estimate the marine boundary layer water vapor beneath uniform cloud fields. Microwave radiometry provides the total column water vapor, while the near-infrared imagery provides the water vapor above the cloud layers. The difference between the two gives the vapor between the surface and the cloud top, which may be interpreted as the boundary layer water vapor. In combining the two datasets, we apply several flags as well as proximity tests to remove pixels with high clouds and/or intrapixel heterogeneity. Comparisons against radiosonde and ECMWF reanalysis data demonstrate the robustness of these boundary layer water vapor estimates. Last, it is shown that the measured AMSR-MODIS boundary layer water vapor can be analyzed using sea surface temperature and cloud-top pressure information by employing simple equations based on the Clausius–Clapeyron relationship.

Corresponding author address: Luis Millán, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109. E-mail: luis.f.millan@jpl.nasa.gov

Abstract

This study investigates the synergy of collocated microwave radiometry and near-infrared imagery to estimate the marine boundary layer water vapor beneath uniform cloud fields. Microwave radiometry provides the total column water vapor, while the near-infrared imagery provides the water vapor above the cloud layers. The difference between the two gives the vapor between the surface and the cloud top, which may be interpreted as the boundary layer water vapor. In combining the two datasets, we apply several flags as well as proximity tests to remove pixels with high clouds and/or intrapixel heterogeneity. Comparisons against radiosonde and ECMWF reanalysis data demonstrate the robustness of these boundary layer water vapor estimates. Last, it is shown that the measured AMSR-MODIS boundary layer water vapor can be analyzed using sea surface temperature and cloud-top pressure information by employing simple equations based on the Clausius–Clapeyron relationship.

Corresponding author address: Luis Millán, Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109. E-mail: luis.f.millan@jpl.nasa.gov
Save
  • Anthes, R. A., and Coauthors, 2008: The COSMIC/FORMOSAT-3 mission: Early results. Bull. Amer. Meteor. Soc., 89, 313333, doi:10.1175/BAMS-89-3-313.

    • Search Google Scholar
    • Export Citation
  • Ao, C. O., T. K. Meehan, G. A. Hajj, A. J. Mannucci, and G. Beyerle, 2003: Lower troposphere refractivity bias in GPS occultation retrievals. J. Geophys. Res., 108, 4577, doi:10.1029/2002JD003216.

    • Search Google Scholar
    • Export Citation
  • Ao, C. O., T. K. Chan, and B. A. Iijima, J.-L. Li, A. J. Mannucci, J. Teixeira, B. Tian, and D. E. Waliser, 2008: Planetary boundary layer information from GPS radio occultation measurements. Proc. GRAS SAF Workshop on Applications of GPS Radio Occultation Measurements, Reading, United Kingdom, European Centre for Medium-Range Weather Forecasts, 123–131. [Available online at http://www.romsaf.org/Workshops/agrom_prog/Ao.pdf.]

  • Ao, C. O., D. E. Waliser, S. K. Chan, J.-L. Li, B. Tian, F. Xie, and A. J. Mannucci, 2012: Planetary boundary layer heights from GPS radio occultation refractivity and humidity profiles. J. Geophys. Res., 117, D16117, doi:10.1029/2012JD017598.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., W. P. Menzel, R. A. Frey, D. C. Tobin, R. E. Holz, S. A. Ackerman, A. K. Heidinger, and P. Yang, 2012: MODIS cloud-top property refinements for Collection 6. J. Appl. Meteor. Climatol., 51, 11451163, doi:10.1175/JAMC-D-11-0203.1.

    • Search Google Scholar
    • Export Citation
  • Bony, S., and J.-L. Dufrense, 2005: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophys. Res. Lett., 32, L20806, doi:10.1029/2005GL023851.

    • Search Google Scholar
    • Export Citation
  • Boucher, O., and Coauthors, 2013: Clouds and aerosols. Climate Change 2013: The Physical Science Basis, T. F. Stocker et al., Eds., Cambridge University Press, 571–657. [Available online at https://www.ipcc.ch/pdf/assessment-report/ar5/wg1/WG1AR5_Chapter07_FINAL.pdf.]

  • Crook, N. A., 1996: Sensitivity of moist convection forced by boundary layer processes to low-level thermodynamic fields. Mon. Wea. Rev., 124, 17671785, doi:10.1175/1520-0493(1996)124<1767:SOMCFB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Crum, T. D., and R. B. Stull, 1987: Field measurements of the amount of surface layer air versus height in the entrainment zone. J. Atmos. Sci., 44, 27432753, doi:10.1175/1520-0469(1987)044<2743:FMOTAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors., 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Dong, S., S. T. Gille, J. Sprintall, and C. Gentemann, 2006: Validation of the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) sea surface temperature in the Southern Ocean. J. Geophys. Res., 111, C04002, doi:10.1029/2005JC002934.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., 2006: The spatial variability of moisture in the boundary layer and its effect on convection initiation: Project-long characterization. Mon. Wea. Rev., 134, 7991, doi:10.1175/MWR3055.1.

    • Search Google Scholar
    • Export Citation
  • Gaffen, D. J., W. P. Elliot, and A. Robock, 1992: Relationships between tropospheric water vapor and surface temperature as observed by radiosondes. Geophys. Res. Lett., 19, 18391842, doi:10.1029/92GL02001.

    • Search Google Scholar
    • Export Citation
  • Gao, B.-C., and Y. J. Kaufman, 2003: Water vapor retrievals using Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared channels. J. Geophys. Res., 108, 21562202, doi:10.1029/2002JD003023.

    • Search Google Scholar
    • Export Citation
  • Guo, P., and B. Yanchen, 2008: Validation of AVHRR/MODIS/AMSR-E satellite SST products in the west tropical Pacific. Proc. Int. Geoscience and Remote Sensing Symp., Boston, MA, Institute of Electrical and Electronics Engineers, 942–945, doi:10.1109/IGARSS.2008.4779879.

  • Jackson, D. L., and G. Stephens, 1995: A study of SSM/I-derived columnar water vapor over the global oceans. J. Climate, 8, 20252038, doi:10.1175/1520-0442(1995)008<2025:ASOSDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kalmus, P., M. Lebsock, and J. Teixeira, 2014: Observational boundary layer energy and water budgets of the stratocumulus-to-cumulus transition. J. Climate, 27, 91559170, doi:10.1175/JCLI-D-14-00242.1.

    • Search Google Scholar
    • Export Citation
  • Kanemaru, K., and H. Masunaga, 2013: A satellite study of the relationship between sea surface temperature and column water vapor over tropical and subtropical oceans. J. Climate, 26, 42044218, doi:10.1175/JCLI-D-12-00307.1.

    • Search Google Scholar
    • Export Citation
  • Karlsson, J., G. Svensson, S. Cardoso, J. Teixeira, and S. Paradise, 2010: Subtropical cloud-regime transitions: Boundary layer depth and cloud-top height evolution in models and observations. J. Appl. Meteor. Climatol., 49, 18451858, doi:10.1175/2010JAMC2338.1.

    • Search Google Scholar
    • Export Citation
  • König-Langlo, G., and B. Marx, 1997: The meteorological information system at the Alfred-Wegener-Institute. Climate and Environment Database Systems, M. Lautenschlager and M. Reinke, Eds., Kluwer, 117–126.

  • Larson, K., D. L. Hartmann, and S. A. Klein, 1999: The role of clouds, water vapor, circulation, and boundary layer structure in the sensitivity of the tropical climate. J. Climate, 12, 23592374, doi:10.1175/1520-0442(1999)012<2359:TROCWV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • L’Ecuyer, T. S., and J. H. Jiang, 2010: Touring the atmosphere aboard the A-Train. Phys. Today, 63, 3641, doi:10.1063/1.3463626.

  • Martin, W. J., and M. Xue, 2006: Sensitivity analysis of convection of the 24 May 2002 IHOP case using very large ensembles. Mon. Wea. Rev., 134, 192207, doi:10.1175/MWR3061.1.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1988: Boundary Layer Climates. 2nd ed. Halsted Press, 455 pp.

  • Randall, D. A., and Coauthors, 2007: Climate models and their evaluation. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 589–662. [Available online at https://www.ipcc.ch/pdf/assessment-report/ar4/wg1/ar4-wg1-chapter8.pdf.]

  • Schreier, M. M., B. H. Kahn, K. Sušelj, J. Karlsson, S. C. Ou, Q. Yue, and S. L. Nasiri, 2014: Atmospheric parameters in a subtropical cloud regime transition derived by AIRS and MODIS: Observed statistical variability compared to ERA-Interim. Atmos. Chem. Phys., 14, 35733587, doi:10.5194/acp-14-3573-2014.

    • Search Google Scholar
    • Export Citation
  • Seidel, D. J., C. O. Ao, and K. Li, 2010: Estimating climatological planetary boundary layer heights from radiosonde observations: Comparison of methods and uncertainty analysis. J. Geophys. Res., 115, D16113, doi:10.1029/2009JD013680.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 1990: On the relationship between water vapor over the oceans and sea surface temperature. J. Climate, 3, 634645, doi:10.1175/1520-0442(1990)003<0634:OTRBWV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., 2005: Cloud feedbacks in the climate system: A critical review. J. Climate, 18, 237273, doi:10.1175/JCLI-3243.1.

  • Stevens, B., and Coauthors, 2016: The Barbados Cloud Observatory—Anchoring investigations of clouds and circulation on the edge of the ITCZ. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-14-00247.1, in press.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Springer, 670 pp.

  • Sudradjat, A., R. R. Ferraro, and M. Fiorino, 2005: A comparison of total precipitable water between reanalyses and NVAP. J. Climate, 18, 17901807, doi:10.1175/JCLI3379.1.

    • Search Google Scholar
    • Export Citation
  • Teixeira, J., and Coauthors, 2008: Parameterization of the atmospheric boundary layer: A view from just above the inversion. Bull. Amer. Meteor. Soc., 89, 453458, doi:10.1175/BAMS-89-4-453.

    • Search Google Scholar
    • Export Citation
  • Teixeira, J., and Coauthors, 2011: Tropical and subtropical cloud transitions in weather and climate prediction models: The GCSS/WGNE Pacific cross-section intercomparison (GPCI). J. Climate, 24, 52235256, doi:10.1175/2011JCLI3672.1.

    • Search Google Scholar
    • Export Citation
  • von Engeln, A., and J. Teixeira, 2013: A planetary boundary layer height climatology derived from ECMWF reanalysis data. J. Climate, 26, 65756590, doi:10.1175/JCLI-D-12-00385.1.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., J. W. Wilson, and R. M. Wakimoto, 1996: Thermodynamic variability within the convective boundary layer due to horizontal convective rolls. Mon. Wea. Rev., 124, 769784, doi:10.1175/1520-0493(1996)124<0769:TVWTCB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Weckwerth, T. M., and Coauthors, 2004: An overview of the International H2O Project (IHOP_2002) and some preliminary highlights. Bull. Amer. Meteor. Soc., 85, 253277, doi:10.1175/BAMS-85-2-253.

    • Search Google Scholar
    • Export Citation
  • Wentz, F. J., and T. Meissner, 2000: AMSR ocean algorithm, version 2. Remote Sensing Systems Tech. Rep. 121599A-1, 66 pp. [Available online at http://eospso.gsfc.nasa.gov/sites/default/files/atbd/atbd-amsr-ocean.pdf.]

  • Wentz, F. J., C. Gentemann, and P. Ashcroft, 2003: On-orbit calibration of AMSR-E and the retrieval of ocean products. 12th Conf. on Satellite Meteorology and Oceanography, Long Beach, CA, Amer. Meteor. Soc., P5.9. [Available online at https://ams.confex.com/ams/annual2003/techprogram/paper_56760.htm.]

  • Wentz, F. J., C. Gentemann, and K. A. Hilburn, 2005: Three years of ocean products from AMSR-E: Evaluation and applications. Proc. Int. Geoscience and Remote Sensing Symp., Seoul, South Korea, Institute of Electrical and Electronics Engineers, 4929–4932, doi:10.1109/IGARSS.2005.1526780.

  • Wood, R., and Coauthors, 2011: The VAMOS Ocean–Cloud–Atmosphere–Land Study Regional Experiment (VOCALS-REx): Goals, platforms, and field operations. Atmos. Chem. Phys., 11, 627654, doi:10.5194/acp-11-627-2011.

    • Search Google Scholar
    • Export Citation
  • Wyant, M. C., C. S. Bretherton, J. T. Bacmeister, J. T. Kiehl, I. M. Held, M. Zhao, S. A. Klein, and B. J. Soden, 2006: A comparison of low-latitude cloud properties and their response to climate change in three AGCMs sorted into regimes using mid-tropospheric vertical velocity. Climate Dyn., 27, 261279, doi:10.1007/s00382-006-0138-4.

    • Search Google Scholar
    • Export Citation
  • Zhang, C., and F. Qiu, 2008: Empirical relationship between sea surface temperature and water vapor: Improvement of the physical model with remote sensing derived data. J. Oceanogr., 64, 163170, doi:10.1007/s10872-008-0012-6.

    • Search Google Scholar
    • Export Citation
  • Zhou, X., P. Kollias, and E. Lewis, 2015: Clouds, precipitation, and marine boundary layer structure during the MAGIC field campaign. J. Climate, 28, 24202442, doi:10.1175/JCLI-D-14-00320.1.

    • Search Google Scholar
    • Export Citation
  • Ziegler, C. L., and E. N. Rasmussen, 1998: The initiation of moist convection at the dryline: Forecasting issues from a case study perspective. Wea. Forecasting, 13, 11061131, doi:10.1175/1520-0434(1998)013<1106:TIOMCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 298 64 6
PDF Downloads 171 47 4