Characterizing Sierra Nevada Snowpack Using Variable-Resolution CESM

Alan M. Rhoades University of California, Davis, Davis, California

Search for other papers by Alan M. Rhoades in
Current site
Google Scholar
PubMed
Close
,
Xingying Huang University of California, Davis, Davis, California

Search for other papers by Xingying Huang in
Current site
Google Scholar
PubMed
Close
,
Paul A. Ullrich University of California, Davis, Davis, California

Search for other papers by Paul A. Ullrich in
Current site
Google Scholar
PubMed
Close
, and
Colin M. Zarzycki National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Colin M. Zarzycki in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The location, timing, and intermittency of precipitation in California make the state integrally reliant on winter-season snowpack accumulation to maintain its economic and agricultural livelihood. Of particular concern is that winter-season snowpack has shown a net decline across the western United States over the past 50 years, resulting in major uncertainty in water-resource management heading into the next century. Cutting-edge tools are available to help navigate and preemptively plan for these uncertainties. This paper uses a next-generation modeling technique—variable-resolution global climate modeling within the Community Earth System Model (VR-CESM)—at horizontal resolutions of 0.125° (14 km) and 0.25° (28 km). VR-CESM provides the means to include dynamically large-scale atmosphere–ocean drivers, to limit model bias, and to provide more accurate representations of regional topography while doing so in a more computationally efficient manner than can be achieved with conventional general circulation models. This paper validates VR-CESM at climatological and seasonal time scales for Sierra Nevada snowpack metrics by comparing them with the “Daymet,” “Cal-Adapt,” NARR, NCEP, and North American Land Data Assimilation System (NLDAS) reanalysis datasets, the MODIS remote sensing dataset, the SNOTEL observational dataset, a standard-practice global climate model (CESM), and a regional climate model (WRF Model) dataset. Overall, given California’s complex terrain and intermittent precipitation and that both of the VR-CESM simulations were only constrained by prescribed sea surface temperatures and data on sea ice extent, a 0.68 centered Pearson product-moment correlation, a negative mean SWE bias of <7 mm, an interquartile range well within the values exhibited in the reanalysis datasets, and a mean December–February extent of snow cover that is within 7% of the expected MODIS value together make apparent the efficacy of the VR-CESM framework.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Alan M. Rhoades, University of California, Davis, Dept. of Land, Air, and Water Resources, 1110 Plant and Environmental Sciences Bldg., One Shields Ave., Davis, CA 95616. E-mail: amrhoades@ucdavis.edu

Abstract

The location, timing, and intermittency of precipitation in California make the state integrally reliant on winter-season snowpack accumulation to maintain its economic and agricultural livelihood. Of particular concern is that winter-season snowpack has shown a net decline across the western United States over the past 50 years, resulting in major uncertainty in water-resource management heading into the next century. Cutting-edge tools are available to help navigate and preemptively plan for these uncertainties. This paper uses a next-generation modeling technique—variable-resolution global climate modeling within the Community Earth System Model (VR-CESM)—at horizontal resolutions of 0.125° (14 km) and 0.25° (28 km). VR-CESM provides the means to include dynamically large-scale atmosphere–ocean drivers, to limit model bias, and to provide more accurate representations of regional topography while doing so in a more computationally efficient manner than can be achieved with conventional general circulation models. This paper validates VR-CESM at climatological and seasonal time scales for Sierra Nevada snowpack metrics by comparing them with the “Daymet,” “Cal-Adapt,” NARR, NCEP, and North American Land Data Assimilation System (NLDAS) reanalysis datasets, the MODIS remote sensing dataset, the SNOTEL observational dataset, a standard-practice global climate model (CESM), and a regional climate model (WRF Model) dataset. Overall, given California’s complex terrain and intermittent precipitation and that both of the VR-CESM simulations were only constrained by prescribed sea surface temperatures and data on sea ice extent, a 0.68 centered Pearson product-moment correlation, a negative mean SWE bias of <7 mm, an interquartile range well within the values exhibited in the reanalysis datasets, and a mean December–February extent of snow cover that is within 7% of the expected MODIS value together make apparent the efficacy of the VR-CESM framework.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Alan M. Rhoades, University of California, Davis, Dept. of Land, Air, and Water Resources, 1110 Plant and Environmental Sciences Bldg., One Shields Ave., Davis, CA 95616. E-mail: amrhoades@ucdavis.edu
Save
  • Anderson, E. A., 1976: A point of energy and mass balance model of snow cover. NOAA Tech. Rep. NWS 19, 172 pp. [Available online at http://amazon.nws.noaa.gov/articles/HRL_Pubs_PDF_May12_2009/HRL_PUBS_51-100/81_A_POINT_ENERGY_AND_MASS.pdf.]

  • Bales, R. C., N. P. Molotch, T. H. Painter, M. D. Dettinger, R. Rice, and J. Dozier, 2006: Mountain hydrology of the western United States. Water Resour. Res., 42, W08432, doi:10.1029/2005WR004387.

    • Search Google Scholar
    • Export Citation
  • Bales, R. C., J. J. Battles, Y. Chen, M. H. Conklin, E. Holst, K. L. O’Hara, P. Saksa, and W. Stewart, 2011: Forests and water in the Sierra Nevada: Sierra Nevada watershed ecosystem enhancement project. Sierra Nevada Research Institute Rep. 11.1, 39 pp. [Available online at http://ucanr.edu/sites/cff/files/146199.pdf.]

  • Caldwell, P., 2010: California wintertime precipitation bias in regional and global climate models. J. Appl. Meteor. Climatol., 49, 21472158, doi:10.1175/2010JAMC2388.1.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., 1996: Interannual climate variability and snowpack in the western United States. J. Climate, 9, 928948, doi:10.1175/1520-0442(1996)009<0928:ICVASI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cayan, D. R., K. T. Redmond, and L. G. Riddle, 1999: ENSO and hydrologic extremes in the western United States. J. Climate, 12, 28812893, doi:10.1175/1520-0442(1999)012<2881:EAHEIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Collins, W. D., and Coauthors, 2004: Description of the NCAR Community Atmosphere Model (CAM 3.0). National Center for Atmospheric Research Tech. Rep. NCAR/TN-464+STR, 214 pp. [Available online at http://www.cesm.ucar.edu/models/atm-cam/docs/description/description.pdf.]

  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • DeFlorio, M. J., D. W. Pierce, D. R. Cayan, and A. J. Miller, 2013: Western U.S. extreme precipitation events and their relation to ENSO and PDO in CCSM4. J. Climate, 26, 42314243, doi:10.1175/JCLI-D-12-00257.1.

    • Search Google Scholar
    • Export Citation
  • Dennis, J., and Coauthors, 2011: CAM-SE: A scalable spectral element dynamical core for the Community Atmosphere Model. Int. J. High Perform. Comput. Appl., 26, 7489, doi:10.1177/1094342011428142.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., 2011: Climate change, atmospheric rivers, and floods in California—A multimodel analysis of storm frequency and magnitude changes. J. Amer. Water Resour. Assoc., 47, 514523, doi:10.1111/j.1752-1688.2011.00546.x.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., D. R. Cayan, H. F. Diaz, and D. M. Meko, 1998: North-south precipitation patterns in western North America on interannual-to-decadal timescales. J. Climate, 11, 30953111, doi:10.1175/1520-0442(1998)011<3095:NSPPIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dettinger, M. D., F. M. Ralph, T. Das, P. J. Neiman, and D. R. Cayan, 2011: Atmospheric rivers, floods and the water resources of California. Water, 3, 445478, doi:10.3390/w3020445.

    • Search Google Scholar
    • Export Citation
  • Fang, C., L. Wu, and X. Zhang, 2014: The impact of global warming on the Pacific decadal oscillation and the possible mechanism. Adv. Atmos. Sci., 31, 118130, doi:10.1007/s00376-013-2260-7.

    • Search Google Scholar
    • Export Citation
  • Gates, W. L., 1992: AMIP: The atmospheric model intercomparison project. Bull. Amer. Meteor. Soc., 73, 19621970, doi:10.1175/1520-0477(1992)073<1962:ATAMIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ghan, S. J., X. Liu, R. C. Easter, R. Zaveri, P. J. Rasch, J.-H. Yoon, and B. Eaton, 2012: Toward a minimal representation of aerosols in climate models: Comparative decomposition of aerosol direct, semidirect, and indirect radiative forcing. J. Climate, 25, 64616476, doi:10.1175/JCLI-D-11-00650.1.

    • Search Google Scholar
    • Export Citation
  • Gimeno, L., R. Nieto, M. Vázquez, and D. A. Lavers, 2014: Atmospheric rivers: A mini-review. Front. Earth Sci., 2, doi:10.3389/feart.2014.00002.

    • Search Google Scholar
    • Export Citation
  • Glantz, M. H., R. W. Katz, and N. Nicholls, Eds., 1991: Teleconnections Linking Worldwide Climate Anomalies. Cambridge University Press, 535 pp.

  • Guan, B., N. P. Molotch, D. E. Waliser, E. J. Fetzer, and P. J. Neiman, 2010: Extreme snowfall events linked to atmospheric rivers and surface air temperature via satellite measurements. Geophys. Res. Lett., 37, L20401, doi:10.1029/2010GL044696.

    • Search Google Scholar
    • Export Citation
  • Guan, B., N. P. Molotch, D. E. Waliser, E. J. Fetzer, and P. J. Neiman, 2013: The 2010/2011 snow season in California’s Sierra Nevada: Role of atmospheric rivers and modes of large-scale variability. Water Resour. Res., 49, 67316743, doi:10.1002/wrcr.20537.

    • Search Google Scholar
    • Export Citation
  • Hall, D. K., and G. A. Riggs, 2007: Accuracy assessment of the MODIS snow products. Hydrol. Processes, 21, 15341547, doi:10.1002/hyp.6715.

    • Search Google Scholar
    • Export Citation
  • Hall, D. K., G. A. Riggs, and V. V. Salomonson, 2006: Modis snow and sea ice products. Earth Science Satellite Remote Sensing, J. J. Qu et al., Eds., Springer, 154–181.

  • Hanak, E., and J. R. Lund, 2012: Adapting California’s water management to climate change. Climatic Change, 111, 1744, doi:10.1007/s10584-011-0241-3.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42 (2), 129151. [Available online at http://www2.mmm.ucar.edu/wrf/users/docs/WSM6-hong_and_lim_JKMS.pdf.]

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 23182341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Jordan, R., 1991: A one-dimensional temperature model for a snow cover: Technical documentation for SNTHERM. 89. Cold Regions Research and Engineering Laboratory Special Rep. 91-16, 62 pp. [Available online at http://acwc.sdp.sirsi.net/client/en_US/search/asset/1011960.]

  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kapnick, S., and A. Hall, 2012: Causes of recent changes in western North American snowpack. Climate Dyn., 38, 18851899, doi:10.1007/s00382-011-1089-y.

    • Search Google Scholar
    • Export Citation
  • Lawrence, D. M., and Coauthors, 2011: Parameterization improvements and functional and structural advances in version 4 of the Community Land Model. J. Adv. Model. Earth Syst., 3, doi:10.1029/2011MS000045.

    • Search Google Scholar
    • Export Citation
  • Li, W., and C. E. Forest, 2014: Estimating the sensitivity of the atmospheric teleconnection patterns to SST anomalies using a linear statistical method. J. Climate, 27, 90659081, doi:10.1175/JCLI-D-14-00231.1.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., and H. G. Hidalgo, 2008: Utility of daily vs. monthly large-scale climate data: An intercomparison of two statistical downscaling methods. Hydrol. Earth Syst. Sci., 12, 551563, doi:10.5194/hess-12-551-2008.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Montoya, E., J. Dozier, and W. Meiring, 2014: Biases of April 1 snow water equivalent records in the Sierra Nevada and their associations with large-scale climate indices. Geophys. Res. Lett., 41, 59125918, doi:10.1002/2014GL060588.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., and A. Gettelman, 2008: A new two-moment bulk stratiform cloud microphysics scheme in the Community Atmosphere Model, version 3 (CAM3). Part I: Description and numerical tests. J. Climate, 21, 36423659, doi:10.1175/2008JCLI2105.1.

    • Search Google Scholar
    • Export Citation
  • Mote, P. W., 2003: Trends in snow water equivalent in the Pacific Northwest and their climatic causes. Geophys. Res. Lett., 30, 1601, doi:10.1029/2003GL017258.

    • Search Google Scholar
    • Export Citation
  • Mote, P. W., A. F. Hamlet, M. P. Clark, and D. P. Lettenmaier, 2005: Declining mountain snowpack in Western North America. Bull. Amer. Meteor. Soc., 86, 3949, doi:10.1175/BAMS-86-1-39.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., J. H. Richter, and M. Jochum, 2008: The impact of convection on ENSO: From a delayed oscillator to a series of events. J. Climate, 21, 59045924, doi:10.1175/2008JCLI2244.1.

    • Search Google Scholar
    • Export Citation
  • Neale, R. B., and Coauthors, 2010: Description of the NCAR Community Atmosphere Model (CAM 5.0). National Center for Atmospheric Research Tech. Note NCAR/TN-486+STR, 268 pp. [Available online at http://www.cesm.ucar.edu/models/cesm1.0/cam/docs/description/cam5_desc.pdf.]

  • NGDC, 2006: 2-minute Gridded Global Relief Data (ETOPO2) v2. NOAA/National Geophysical Data Center, accessed 17 Nov 2015, doi:10.7289/V5J1012Q.

  • Oleson, K., and Coauthors, 2010: Technical description of version 4.0 of the Community Land Model (CLM). National Center for Atmospheric Research Tech. Note NCAR/TN-478+STR, 257 pp., doi:10.5065/D6FB50WZ.

  • Palmer, P. L., 1988: The SCS snow survey water supply forecasting program: Current operations and future directions. Proc. 56th Annual Meeting, Western Snow Conference, Kalispell, MT, Western Snow Conference, 4351. [Available online at http://westernsnowconference.org/sites/westernsnowconference.org/PDFs/1988Palmer.pdf.]

  • Pandey, G. R., D. R. Cayan, and K. P. Georgakakos, 1999: Precipitation structure in the Sierra Nevada of California during winter. J. Geophys. Res., 104, 12 01912 030, doi:10.1029/1999JD900103.

    • Search Google Scholar
    • Export Citation
  • Park, S., and C. S. Bretherton, 2009: The University of Washington shallow convection and moist turbulence schemes and their impact on climate simulations with the Community Atmosphere Model. J. Climate, 22, 34493469, doi:10.1175/2008JCLI2557.1.

    • Search Google Scholar
    • Export Citation
  • Park, S., C. S. Bretherton, and P. J. Rasch, 2014: Integrating cloud processes in the Community Atmosphere Model, version 5. J. Climate, 27, 68216856, doi:10.1175/JCLI-D-14-00087.1.

    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., and D. R. Cayan, 2013: The uneven response of different snow measures to human-induced climate warming. J. Climate, 26, 41484167, doi:10.1175/JCLI-D-12-00534.1.

    • Search Google Scholar
    • Export Citation
  • Ralph, F. M., P. J. Neiman, and G. A. Wick, 2004: Satellite and CALJET aircraft observations of atmospheric rivers over the eastern North Pacific Ocean during the winter of 1997/98. Mon. Wea. Rev., 132, 17211745, doi:10.1175/1520-0493(2004)132<1721:SACAOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rupp, D. E., P. W. Mote, N. L. Bindoff, P. A. Stott, and D. A. Robinson, 2013: Detection and attribution of observed changes in Northern Hemisphere spring snow cover. J. Climate, 26, 69046914, doi:10.1175/JCLI-D-12-00563.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2014: The NCEP Climate Forecast System version 2. J. Climate, 27, 21852208, doi:10.1175/JCLI-D-12-00823.1.

  • Salzmann, N., and L. O. Mearns, 2012: Assessing the performance of multiple regional climate model simulations for seasonal mountain snow in the upper Colorado River basin. J. Hydrometeor., 13, 539556, doi:10.1175/2011JHM1371.1.

    • Search Google Scholar
    • Export Citation
  • Seaber, P. R., F. P. Kapinos, and G. L. Knapp, 1987: Hydrologic unit maps. U.S. Geological Survey Water-Supply Paper 2294, 63 pp. [Available online at http://pubs.usgs.gov/wsp/wsp2294/pdf/wsp_2294.pdf.]

  • Serreze, M. C., M. P. Clark, R. L. Armstrong, D. A. McGinnis, and R. S. Pulwarty, 1999: Characteristics of the western United States snowpack from snowpack telemetry (SNOTEL) data. Water Resour. Res., 35, 21452160, doi:10.1029/1999WR900090.

    • Search Google Scholar
    • Export Citation
  • Stewart, W. C., 1996: Economic assessment of the ecosystem. In Sierra Nevada Ecosystem Project: Final report to Congress—Status of the Sierra Nevada, Vol. III: Assessments, commissioned reports, and background information. University of California, Davis, Centers for Water and Wildland Resources Wildland Resources Center Rep. 38 (section 23), 91 pp. [Available online at http://pubs.usgs.gov/dds/dds-43/VOL_III/VIII_C23.PDF.]

  • Tanaka, S. K., and Coauthors, 2006: Climate warming and water management adaptation for California. Climatic Change, 76, 361387, doi:10.1007/s10584-006-9079-5.

    • Search Google Scholar
    • Export Citation
  • Taylor, M. A., and A. Fournier, 2010: A compatible and conservative spectral element method on unstructured grids. J. Comput. Phys., 229, 58795895, doi:10.1016/j.jcp.2010.04.008.

    • Search Google Scholar
    • Export Citation
  • Taylor, M. A., J. Tribbia, and M. Iskandarani, 1997: The spectral element method for the shallow water equations on the sphere. J. Comput. Phys., 130, 92108, doi:10.1006/jcph.1996.5554.

    • Search Google Scholar
    • Export Citation
  • Thornton, P., M. Thornton, B. Mayer, N. Wilhelmi, Y. Wei, R. Devarakonda, and R. Cook, 2014: Daymet: Daily Surface Weather Data on a 1-km Grid for North America, version 2. Oak Ridge National Laboratory Distributed Active Archive Center. Subset used: 1980–2005, accessed 1 November 2014, doi:10.3334/ORNLDAAC/1219.

  • Ullrich, P. A., 2014: SQuadGen: Spherical quadrilateral grid generator. University of California, Davis, Climate and Global Change Group software. [Available online at http://climate.ucdavis.edu/squadgen.php.]

  • Ullrich, P. A., and M. A. Taylor, 2015: Arbitrary-order conservative and consistent remapping and a theory of linear maps: Part I. Mon. Wea. Rev., 143, 24192440, doi:10.1175/MWR-D-14-00343.1.

    • Search Google Scholar
    • Export Citation
  • Varhola, A., N. C. Coops, M. Weiler, and R. D. Moore, 2010: Forest canopy effects on snow accumulation and ablation: An integrative review of empirical results. J. Hydrol., 392, 219233, doi:10.1016/j.jhydrol.2010.08.009.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, S.-Y., L. Hipps, R. R. Gillies, and J.-H. Yoon, 2014: Probable causes of the abnormal ridge accompanying the 2013–2014 California drought: ENSO precursor and anthropogenic warming footprint. Geophys. Res. Lett., 41, 32203226, doi:10.1002/2014GL059748.

    • Search Google Scholar
    • Export Citation
  • Wehner, M. F., and Coauthors, 2014: The effect of horizontal resolution on simulation quality in the Community Atmospheric Model, CAM5.1. J. Adv. Model. Earth Syst., 6, 980997, doi:10.1002/2013MS000276.

    • Search Google Scholar
    • Export Citation
  • Wise, E. K., 2012: Hydroclimatology of the US Intermountain West. Prog. Phys. Geogr., 36, 458479, doi:10.1177/0309133312446538.

  • Xia, Y., and Coauthors, 2012a: Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res., 117, D03109, doi:10.1029/2011JD016048.

    • Search Google Scholar
    • Export Citation
  • Xia, Y., and Coauthors, 2012b: Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow. J. Geophys. Res., 117, D03110, doi:10.1029/2011JD016051.

    • Search Google Scholar
    • Export Citation
  • Yang, Z.-L., X. Cai, G. Zhang, A. A. Tavakoly, Q. Jin, L. H. Meyer, and X. Guan, 2011: The Community Noah Land Surface Model with Multi-Parameterization Options (Noah-MP): Technical description. The University of Texas at Austin Dept. of Geological Sciences Center for Integrated Earth System Science Tech. Rep., 72 pp. [Available online at http://www.jsg.utexas.edu/noah-mp/files/Noah-MP_Technote_v0.2.pdf.]

  • Yen, Y.-C., 1965: Heat transfer characteristics of naturally compacted snow. Cold Regions Research and Engineering Laboratory Research Rep. 166, 14 pp. [Available online at http://acwc.sdp.sirsi.net/client/search/asset/1013065.]

  • Yongjiu, D., and Z. Qingcun, 1997: A land surface model (IAP94) for climate studies part I: Formulation and validation in off-line experiments. Adv. Atmos. Sci., 14, 433460, doi:10.1007/s00376-997-0063-4.

    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., and C. Jablonowski, 2014: A multidecadal simulation of Atlantic tropical cyclones using a variable-resolution global atmospheric general circulation model. J. Adv. Model. Earth Syst., 6, 805828, doi:10.1002/2014MS000352.

    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., C. Jablonowski, and M. A. Taylor, 2014a: Using variable resolution meshes to model tropical cyclones in the Community Atmosphere Model. Mon. Wea. Rev., 142, 12211239, doi:10.1175/MWR-D-13-00179.1.

    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., M. N. Levy, C. Jablonowski, J. R. Overfelt, M. A. Taylor, and P. A. Ullrich, 2014b: Aquaplanet experiments using CAM’s variable-resolution dynamical core. J. Climate, 27, 54815503, doi:10.1175/JCLI-D-14-00004.1.

    • Search Google Scholar
    • Export Citation
  • Zarzycki, C. M., C. Jablonowski, D. R. Thatcher, and M. A. Taylor, 2015: Effects of localized grid refinement on the general circulation and climatology in the Community Atmosphere Model. J. Climate, 28, 27772803, doi:10.1175/JCLI-D-14-00599.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1371 491 72
PDF Downloads 729 150 10