Probability-Weighted Ensembles of U.S. County-Level Climate Projections for Climate Risk Analysis

D. J. Rasmussen Rhodium Group, Oakland, California

Search for other papers by D. J. Rasmussen in
Current site
Google Scholar
PubMed
Close
,
Malte Meinshausen Australian–German Climate and Energy College, School of Earth Sciences, University of Melbourne, Parkville, Victoria, Australia, and Potsdam Institute for Climate Impact Research, Potsdam, Germany

Search for other papers by Malte Meinshausen in
Current site
Google Scholar
PubMed
Close
, and
Robert E. Kopp Department of Earth and Planetary Sciences, Rutgers Energy Institute, and Institute of Earth, Ocean and Atmospheric Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey

Search for other papers by Robert E. Kopp in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Quantitative assessment of climate change risk requires a method for constructing probabilistic time series of changes in physical climate parameters. Here, two such methods, surrogate/model mixed ensemble (SMME) and Monte Carlo pattern/residual (MCPR), are developed and then are applied to construct joint probability density functions (PDFs) of temperature and precipitation change over the twenty-first century for every county in the United States. Both methods produce likely (67% probability) temperature and precipitation projections that are consistent with the Intergovernmental Panel on Climate Change’s interpretation of an equal-weighted Coupled Model Intercomparison Project phase 5 (CMIP5) ensemble but also provide full PDFs that include tail estimates. For example, both methods indicate that, under “Representative Concentration Pathway” 8.5, there is a 5% chance that the contiguous United States could warm by at least 8°C between 1981–2010 and 2080–99. Variance decomposition of SMME and MCPR projections indicates that background variability dominates uncertainty in the early twenty-first century whereas forcing-driven changes emerge in the second half of the twenty-first century. By separating CMIP5 projections into unforced and forced components using linear regression, these methods generate estimates of unforced variability from existing CMIP5 projections without requiring the computationally expensive use of multiple realizations of a single GCM.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-15-0302.s1.

Current affiliation: Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, New Jersey.

Corresponding author address: Robert Kopp, Dept. of Earth and Planetary Sciences, 610 Taylor Rd., Rutgers, The State University of New Jersey, Piscataway, NJ 08854. E-mail: robert.kopp@rutgers.edu

Abstract

Quantitative assessment of climate change risk requires a method for constructing probabilistic time series of changes in physical climate parameters. Here, two such methods, surrogate/model mixed ensemble (SMME) and Monte Carlo pattern/residual (MCPR), are developed and then are applied to construct joint probability density functions (PDFs) of temperature and precipitation change over the twenty-first century for every county in the United States. Both methods produce likely (67% probability) temperature and precipitation projections that are consistent with the Intergovernmental Panel on Climate Change’s interpretation of an equal-weighted Coupled Model Intercomparison Project phase 5 (CMIP5) ensemble but also provide full PDFs that include tail estimates. For example, both methods indicate that, under “Representative Concentration Pathway” 8.5, there is a 5% chance that the contiguous United States could warm by at least 8°C between 1981–2010 and 2080–99. Variance decomposition of SMME and MCPR projections indicates that background variability dominates uncertainty in the early twenty-first century whereas forcing-driven changes emerge in the second half of the twenty-first century. By separating CMIP5 projections into unforced and forced components using linear regression, these methods generate estimates of unforced variability from existing CMIP5 projections without requiring the computationally expensive use of multiple realizations of a single GCM.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-15-0302.s1.

Current affiliation: Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, New Jersey.

Corresponding author address: Robert Kopp, Dept. of Earth and Planetary Sciences, 610 Taylor Rd., Rutgers, The State University of New Jersey, Piscataway, NJ 08854. E-mail: robert.kopp@rutgers.edu

Supplementary Materials

    • Supplemental Materials (ZIP 12.9 MB)
Save
  • Archer, D., 2007: Methane hydrate stability and anthropogenic climate change. Biogeosciences, 4, 521544, doi:10.5194/bg-4-521-2007.

  • Arguez, A., I. Durre, S. Applequist, R. S. Vose, M. F. Squires, X. Yin, R. R. Heim Jr., and T. W. Owen, 2012: NOAA’s 1981–2010 U.S. climate normals: An overview. Bull. Amer. Meteor. Soc., 93, 16871697, doi:10.1175/BAMS-D-11-00197.1.

    • Search Google Scholar
    • Export Citation
  • Auffhammer, M., and A. Aroonruengsawat, 2011: Simulating the impacts of climate change, prices and population on California’s residential electricity consumption. Climatic Change, 109 (S1), 191210, doi:10.1007/s10584-011-0299-y.

    • Search Google Scholar
    • Export Citation
  • Brekke, L., A. Wood, and T. Pruitt, 2014: Downscaled CMIP3 and CMIP5 climate projections: Release of downscaled CMIP5 climate projections, comparison with preceding information, and summary of user needs. U.S. Bureau of Reclamation et al. Tech. Memo., 110 pp. [Available online at http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/techmemo/BCSD5HydrologyMemo.pdf.]

  • Collins, M., and Coauthors, 2013: Long-term climate change: Projections, commitments and irreversibility. Climate Change 2013: The Physical Science Basis, T. Stocker et al., Eds., Cambridge University Press, 1029–1136, doi:10.1017/CBO9781107415324.024.

  • Cubasch, U., and Coauthors, 2001: Projections of future climate change. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 526–582. [Available online at http://www.grida.no/climate/ipcc_tar/wg1/pdf/tar-09.pdf.]

  • Delworth, T. L., and Coauthors, 2012: Simulated climate and climate change in the GFDL CM2.5 high-resolution coupled climate model. J. Climate, 25, doi:10.1175/JCLI-D-11-00316.1.

    • Search Google Scholar
    • Export Citation
  • Deschenês, O., and M. Greenstone, 2011: Climate change, mortality, and adaptation: Evidence from annual fluctuations in weather in the U.S. Amer. Econ. J. Appl. Econ., 3 (4), 152185, doi:10.1257/app.3.4.152.

    • Search Google Scholar
    • Export Citation
  • Deser, C., A. S. Phillips, M. A. Alexander, and B. V. Smoliak, 2014: Projecting North American climate over the next 50 years: Uncertainty due to internal variability. J. Climate, 27, 22712296, doi:10.1175/JCLI-D-13-00451.1.

    • Search Google Scholar
    • Export Citation
  • Flato, G., and Coauthors, 2013: Evaluation of climate models. Climate Change 2013: The Physical Science Basis, T. Stocker et al., Eds., Cambridge University Press, 741–866, doi:10.1017/CBO9781107415324.020.

  • Francis, J. A., and S. J. Vavrus, 2012: Evidence linking Arctic amplification to extreme weather in mid-latitudes. Geophys. Res. Lett., 39, l06801, doi:10.1029/2012GL051000.

    • Search Google Scholar
    • Export Citation
  • Frieler, K., M. Meinshausen, M. Mengel, N. Braun, and W. Hare, 2012: A scaling approach to probabilistic assessment of regional climate change. J. Climate, 25, 31173144, doi:10.1175/JCLI-D-11-00199.1.

    • Search Google Scholar
    • Export Citation
  • Griffies, S. M., and Coauthors, 2011: The GFDL CM3 coupled climate model: Characteristics of the ocean and sea ice simulations. J. Climate, 24, 35203544, doi:10.1175/2011JCLI3964.1.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2009: The potential to narrow uncertainty in regional climate predictions. Bull. Amer. Meteor. Soc., 90, 10951107, doi:10.1175/2009BAMS2607.1.

    • Search Google Scholar
    • Export Citation
  • Hawkins, E., and R. Sutton, 2011: The potential to narrow uncertainty in projections of regional precipitation change. Climate Dyn., 37, 407418, doi:10.1007/s00382-010-0810-6.

    • Search Google Scholar
    • Export Citation
  • Heal, G., and A. Millner, 2014: Uncertainty and decision making in climate change economics. Rev. Environ. Econ. Policy, 8, 120137, doi:10.1093/reep/ret023.

    • Search Google Scholar
    • Export Citation
  • Ho, C. K., D. B. Stephenson, M. Collins, C. A. T. Ferro, and S. J. Brown, 2012: Calibration strategies: A source of additional uncertainty in climate change projections. Bull. Amer. Meteor. Soc., 93, 2126, doi:10.1175/2011BAMS3110.1.

    • Search Google Scholar
    • Export Citation
  • Houser, T., and Coauthors, 2015: Economic Risks of Climate Change: An American Prospectus. Columbia University Press, 384 pp.

  • Hurrell, J. W., and Coauthors, 2013: The Community Earth System Model: A framework for collaborative research. Bull. Amer. Meteor. Soc., 94, 13391360, doi:10.1175/BAMS-D-12-00121.1.

    • Search Google Scholar
    • Export Citation
  • Kaplan, S., and B. J. Garrick, 1981: On the quantitative definition of risk. Risk Anal., 1, 1127, doi:10.1111/j.1539-6924.1981.tb01350.x.

    • Search Google Scholar
    • Export Citation
  • Kay, J. E., and Coauthors, 2015: The Community Earth System Model (CESM) Large Ensemble Project: A community resource for studying climate change in the presence of internal climate variability. Bull. Amer. Meteor. Soc., 96, 13331349, doi:10.1175/BAMS-D-13-00255.1.

    • Search Google Scholar
    • Export Citation
  • Mahmood, R., and M. S. Babel, 2013: Evaluation of SDSM developed by annual and monthly sub-models for downscaling temperature and precipitation in the Jhelum Basin, Pakistan and India. Theor. Appl. Climatol., 113, 2744, doi:10.1007/s00704-012-0765-0.

    • Search Google Scholar
    • Export Citation
  • McGinnis, S., D. Nychka, and L. O. Mearns, 2015: A new distribution mapping technique for climate model bias correction. Machine Learning and Data Mining Approaches to Climate Science: Proceedings of the Fourth International Workshop on Climate Informatics, V. Lakshmanan et al., Eds., Springer, 91–99, doi:10.1007/978-3-319-17220-0.

  • Meehl, G. A., and Coauthors, 2013: Climate change projections in CESM1(CAM5) compared to CCSM4. J. Climate, 26, 62876308, doi:10.1175/JCLI-D-12-00572.1.

    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., N. Meinshausen, W. Hare, S. C. Raper, K. Frieler, R. Knutti, D. J. Frame, and M. R. Allen, 2009: Greenhouse-gas emission targets for limiting global warming to 2°C. Nature, 458, 11581162, doi:10.1038/nature08017.

    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., S. C. B. Raper, and T. M. L. Wigley, 2011a: Emulating coupled atmosphere–ocean and carbon cycle models with a simpler model, MAGICC6—Part 1: Model description and calibration. Atmos. Chem. Phys., 11, 14171456, doi:10.5194/acp-11-1417-2011.

    • Search Google Scholar
    • Export Citation
  • Meinshausen, M., and Coauthors, 2011b: The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change, 109, 213241, doi:10.1007/s10584-011-0156-z.

    • Search Google Scholar
    • Export Citation
  • Mitchell, T. D., 2003: Pattern scaling: An examination of the accuracy of the technique for describing future climates. Climatic Change, 60, 217242, doi:10.1023/A:1026035305597.

    • Search Google Scholar
    • Export Citation
  • Moss, R. H., and Coauthors, 2010: The next generation of scenarios for climate change research and assessment. Nature, 463, 747756, doi:10.1038/nature08823.

    • Search Google Scholar
    • Export Citation
  • O’Neill, B. C., E. Kriegler, K. Riahi, K. L. Ebi, S. Hallegatte, T. R. Carter, R. Mathur, and D. P. Vuuren, 2014: A new scenario framework for climate change research: The concept of shared socioeconomic pathways. Climatic Change, 122, 387400, doi:10.1007/s10584-013-0905-2.

    • Search Google Scholar
    • Export Citation
  • O’Neill, B. C., and Coauthors, 2016: The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century. Global Environ. Change, doi:10.1016/j.gloenvcha.2015.01.004, in press.

    • Search Google Scholar
    • Export Citation
  • Pierce, D. W., D. R. Cayan, and B. L. Thrasher, 2014: Statistical downscaling using localized constructed analogs (LOCA). J. Hydrometeor., 15, 25582585, doi:10.1175/JHM-D-14-0082.1.

    • Search Google Scholar
    • Export Citation
  • Ramirez-Villegas, J., and A. Jarvis, 2010: Downscaling global circulation model outputs: The Delta Method Decision and Policy Analysis Working Paper No. 1. Centro Internacional de Agricultura Tropical (CIAT) Tech. Rep., 18 pp. [Available online at http://www.ccafs-climate.org/downloads/docs/Downscaling-WP-01.pdf.]

  • Rasmussen, D. J., and R. E. Kopp, 2015: Appendix A: Physical climate projections. Economic Risks of Climate Change: An American Prospectus, T. Houser et al., Eds., Columbia University Press, 219–248. [Available online at http://cup.columbia.edu/book/economic-risks-of-climate-change/9780231174565.]

  • Riahi, K., 2013: Preliminary IAM scenarios based on the RCP/SSP framework. Presentation, Climate Change Impacts and Integrated Assessment XIX, Snowmass, CO, Energy Modeling Forum, 41 pp. [Available online at http://web.stanford.edu/group/emf-research/docs/CCIIA/2013/7-31/Riahi%20IAM%20SSP%20%26%20SSP-RCP%20replications.pdf.]

  • Rogelj, J., M. Meinshausen, and R. Knutti, 2012: Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat. Climate Change, 2, 248253, doi:10.1038/nclimate1385.

    • Search Google Scholar
    • Export Citation
  • Santer, B. D., T. M. L. Wigley, M. E. Schlesinger, and J. F. B. Mitchell, 1990: Developing climate scenarios from equilibrium GCM results. Max-Planck-Institut für Meteorologie Rep. 47, 29 pp. [Available online at https://www.mpimet.mpg.de/fileadmin/publikationen/Reports/Report_47.pdf.]

  • Schlenker, W., and M. J. Roberts, 2009: Nonlinear temperature effects indicate severe damages to U.S. crop yields under climate change. Proc. Natl. Acad. Sci. USA, 106, 15 59415 598, doi:10.1073/pnas.0906865106.

    • Search Google Scholar
    • Export Citation
  • Stainforth, D. A., and Coauthors, 2005: Uncertainty in predictions of the climate response to rising levels of greenhouse gases. Nature, 433, 403406, doi:10.1038/nature03301.

    • Search Google Scholar
    • Export Citation
  • Stoner, A. M. K., K. Hayhoe, X. Yang, and D. J. Wuebbles, 2013: An asynchronous regional regression model for statistical downscaling of daily climate variables. Int. J. Climatol., 33, 24732494, doi:10.1002/joc.3603.

    • Search Google Scholar
    • Export Citation
  • Sutton, R., E. Suckling, and E. Hawkins, 2015: What does global mean temperature tell us about local climate? Philos. Trans. Roy. Soc. London, 373A, 20140426, doi:10.1098/rsta.2014.0426.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., and R. Knutti, 2007: The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. Roy. Soc. London, 365A, 20532075, doi:10.1098/rsta.2007.2076.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., and J. M. Arblaster, 2014: Pattern scaling: Its strengths and limitations, and an update on the latest model simulations. Climatic Change, 122, 459471, doi:10.1007/s10584-013-1032-9.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., J. M. Arblaster, and R. Knutti, 2011: Mapping model agreement on future climate projections. Geophys. Res. Lett., 38, L23701, doi:10.1029/2011GL049863.

    • Search Google Scholar
    • Export Citation
  • van Vuuren, D. P., and Coauthors, 2011: The representative concentration pathways: An overview. Climatic Change, 109, 531, doi:10.1007/s10584-011-0148-z.

    • Search Google Scholar
    • Export Citation
  • Whiteman, G., C. Hope, and P. Wadhams, 2013: Climate science: Vast costs of Arctic change. Nature, 499, 401403, doi:10.1038/499401a.

  • Wood, A. W., E. P. Maurer, A. Kumar, and D. P. Lettenmaier, 2002: Long-range experimental hydrologic forecasting for the eastern United States. J. Geophys. Res., 107, 4429, doi:10.1029/2001JD000659.

    • Search Google Scholar
    • Export Citation
  • Wood, A. W., L. R. Leung, V. Sridhar, and D. P. Lettenmaier, 2004: Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Climatic Change, 62, 189216, doi:10.1023/B:CLIM.0000013685.99609.9e.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 2 0 0
Full Text Views 664 634 65
PDF Downloads 319 307 27