Evaluation of Variation in Surface Solar Irradiance and Clustering of Observation Stations in Japan

Takeshi Watanabe Tokai University Research and Information Center, Tokai University, Tokyo, Japan

Search for other papers by Takeshi Watanabe in
Current site
Google Scholar
PubMed
Close
,
Takahiro Takamatsu School of Integrated Design Engineering, Keio University, Yokohama, Japan

Search for other papers by Takahiro Takamatsu in
Current site
Google Scholar
PubMed
Close
, and
Takashi Y. Nakajima Tokai University Research and Information Center, Tokai University, Tokyo, Japan

Search for other papers by Takashi Y. Nakajima in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Variation in surface solar irradiance is investigated using ground-based observation data. The solar irradiance analyzed in this paper is scaled by the solar irradiance at the top of the atmosphere and is thus dimensionless. Three metrics are used to evaluate the variation in solar irradiance: the mean, standard deviation, and sample entropy. Sample entropy is a value representing the complexity of time series data, but it is not often used for investigation of solar irradiance. In analyses of solar irradiance, sample entropy represents the manner of its fluctuation; large sample entropy corresponds to rapid fluctuation and a high ramp rate, and small sample entropy suggests weak or slow fluctuations. The three metrics are used to cluster 47 ground-based observation stations in Japan into groups with similar features of variation in surface solar irradiance. This new approach clarifies regional features of variation in solar irradiance. The results of this study can be applied to renewable-energy engineering.

Denotes Open Access content.

Corresponding author address: T. Watanabe, Tokai University Research and Information Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan. E-mail: nabetake@ees.hokudai.ac.jp

Abstract

Variation in surface solar irradiance is investigated using ground-based observation data. The solar irradiance analyzed in this paper is scaled by the solar irradiance at the top of the atmosphere and is thus dimensionless. Three metrics are used to evaluate the variation in solar irradiance: the mean, standard deviation, and sample entropy. Sample entropy is a value representing the complexity of time series data, but it is not often used for investigation of solar irradiance. In analyses of solar irradiance, sample entropy represents the manner of its fluctuation; large sample entropy corresponds to rapid fluctuation and a high ramp rate, and small sample entropy suggests weak or slow fluctuations. The three metrics are used to cluster 47 ground-based observation stations in Japan into groups with similar features of variation in surface solar irradiance. This new approach clarifies regional features of variation in solar irradiance. The results of this study can be applied to renewable-energy engineering.

Denotes Open Access content.

Corresponding author address: T. Watanabe, Tokai University Research and Information Center, Tokai University, 4-1-1 Kitakaname, Hiratsuka, Kanagawa 259-1292, Japan. E-mail: nabetake@ees.hokudai.ac.jp
Save
  • Caliński, T., and J. Harabasz, 1974: A dendrite method for cluster analysis. Commun. Stat., 3, 127, doi:10.1080/03610928308827180.

  • Diabate, L., Ph. Blanc, and L. Wald, 2004: Solar radiation climate in Africa. Sol. Energy, 76, 733744, doi:10.1016/j.solener.2004.01.002.

    • Search Google Scholar
    • Export Citation
  • Duchon, C. E., and M. S. O’Malley, 1999: Estimating cloud type from pyranometer observation. J. Appl. Meteor., 38, 132141, doi:10.1175/1520-0450(1999)038<0132:ECTFPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fovell, R. G., and M. C. Fovell, 1993: Climate zones of the conterminous United States defined using cluster analysis. J. Climate, 6, 21032135, doi:10.1175/1520-0442(1993)006<2103:CZOTCU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • JMA, 1996: Synoptic reports at one-minute intervals. Japan Meteorological Agency Business Support Center, CD-ROM.

  • Lake, D. E., J. S. Richman, M. P. Griffin, and J. R. Moorman, 2002: Sample entropy analysis of neonatal heart rate variability. Amer. J. Physiol. Regul. Integr. Comp. Physiol., 283, R789R797, doi:10.1152/ajpregu.00069.2002.

    • Search Google Scholar
    • Export Citation
  • Lave, M., and J. Kleissl, 2010: Solar variability of four sites across the state of Colorado. Renewable Energy, 35, 28672873, doi:10.1016/j.renene.2010.05.013.

    • Search Google Scholar
    • Export Citation
  • Lave, M., J. Kleissl, and E. Arias-Castro, 2012: High-frequency irradiance fluctuations and geographic smoothing. Sol. Energy, 86, 21902199, doi:10.1016/j.solener.2011.06.031.

    • Search Google Scholar
    • Export Citation
  • Li, S., Q. Zhou, S. Wu, and E. Dai, 2006: Measurement of climate complexity using sample entropy. Int. J. Climatol., 26, 21312139, doi:10.1002/joc.1357.

    • Search Google Scholar
    • Export Citation
  • Marcos, J., L. Marroyo, E. Lorenzo, and M. Garcis, 2012: Smoothing of PV power fluctuations by geographical dispersion. Prog. Photovolt. Res. Appl., 20, 226237, doi:10.1002/pip.1127.

    • Search Google Scholar
    • Export Citation
  • Meyers, S. D., B. G. Kelly, and J. J. O’Brien, 1993: An introduction to wavelet analysis in oceanography and meteorology: With application to the dispersion of Yanai waves. Mon. Wea. Rev., 121, 28582866, doi:10.1175/1520-0493(1993)121<2858:AITWAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Murata, A., H. Yamaguchi, and K. Otani, 2009: A method of estimating the output fluctuation of many photovoltaic power generation systems dispersed in a wide area. Electr. Eng. Japan, 166, 919, doi:10.1002/eej.20723.

    • Search Google Scholar
    • Export Citation
  • Murtagh, F., and P. Legendre, 2014: Ward’s hierarchical agglomerative clustering method: Which algorithms implement Ward’s criterion? J. Classif., 31, 274295, doi:10.1007/s00357-014-9161-z.

    • Search Google Scholar
    • Export Citation
  • Ohtake, H., J. G. S. Fonseca Jr., T. Takashima, T. Oozeki, K. Shimose, and Y. Yamada, 2015: Regional and seasonal characteristics of global horizontal irradiance forecasts obtained from the Japan Meteorological Agency mesoscale model. Sol. Energy, 116, 8399, doi:10.1016/j.solener.2015.03.020.

    • Search Google Scholar
    • Export Citation
  • Pincus, S. M., 1991: Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA, 88, 22972301, doi:10.1073/pnas.88.6.2297.

    • Search Google Scholar
    • Export Citation
  • Pincus, S. M., and A. L. Goldberger, 1994: Physiological time-series analysis: What does regularity quantify? Amer. J. Physiol. Heart Circ. Physiol., 266, H1643H1656.

    • Search Google Scholar
    • Export Citation
  • Richman, J. S., and J. R. Moorman, 2000: Physiological time-series analysis using approximate entropy and sample entropy. Amer. J. Physiol. Heart Circ. Physiol., 278, H2039H2049. [Available online at http://ajpheart.physiology.org/content/278/6/H2039.]

    • Search Google Scholar
    • Export Citation
  • Tomson, T., and G. Tamm, 2006: Short-term variation of solar radiation. Sol. Energy, 80, 600606, doi:10.1016/j.solener.2005.03.009.

  • Torrence, C., and G. P. Compo, 1998: A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79, 6178, doi:10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2011: Statistical Methods in the Atmospheric Science 3rd ed. Academic Press, 676 pp.

  • Woyte, A., R. Belmans, and J. Nijs, 2007: Fluctuation in instantaneous clearness index: Analysis and statistics. Sol. Energy, 81, 195206, doi:10.1016/j.solener.2006.03.001.

    • Search Google Scholar
    • Export Citation
  • Yoshida, S., and H. Kikuchihara, 1989: Solar radiation maps for Japan—Part 10. Climatological divisions for solar irradiance (in Japanese). J. Japan Sol. Energy Soc., 15, 1522.

    • Search Google Scholar
    • Export Citation
  • Zagouras, A., A. Kazantzidisa, E. Nikitidoua, and A. A. Argiriou, 2013: Determination of measuring sites for solar irradiance, based on cluster analysis of satellite-derived cloud estimations. Sol. Energy, 97, 111, doi:10.1016/j.solener.2013.08.005.

    • Search Google Scholar
    • Export Citation
  • Zagouras, A., R. H. Inman, and C. F. M. Coimbra, 2014a: On the determination of coherent solar microclimates for utility planning and operations. Sol. Energy, 102, 173188, doi:10.1016/j.solener.2014.01.021.

    • Search Google Scholar
    • Export Citation
  • Zagouras, A., H. T. C. Pedro, and C. F. M. Coimbra, 2014b: Clustering the solar resource for grid management in island mode. Sol. Energy, 110, 507518, doi:10.1016/j.solener.2014.10.002.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 381 75 7
PDF Downloads 233 62 6