Lidar-Based Height Correction for the Assimilation of Atmospheric Motion Vectors

Kathrin Folger Hans-Ertel Centre for Weather Research, Data Assimilation Branch, Ludwig-Maximilians University, Munich, Germany

Search for other papers by Kathrin Folger in
Current site
Google Scholar
PubMed
Close
and
Martin Weissmann Hans-Ertel Centre for Weather Research, Data Assimilation Branch, Ludwig-Maximilians University, Munich, Germany

Search for other papers by Martin Weissmann in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study uses lidar observations from the polar-orbiting Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite to correct operational atmospheric motion vector (AMV) pressure heights. This intends to reduce the height assignment error of AMVs for their use in data assimilation. Additionally, AMVs are treated as winds in a vertical layer as proposed by several recent studies. Corrected and uncorrected AMV winds are evaluated using short-term forecasts of the global forecasting system of the German Weather Service. First, a direct lidar-based height reassignment of AMVs with collocated CALIPSO observations is evaluated. Assigning AMV winds from Meteosat-10 to ~120-hPa-deep layers below the lidar cloud top reduces the vector root-mean-square (VRMS) differences of AMVs from Meteosat-10 by 8%–15%. However, such a direct reassignment can only be applied to collocated AMV–CALIPSO observations that compose a comparably small subset of all AMVs. Second, CALIPSO observations are used to derive statistical height bias correction functions for a general height correction of all operational AMVs from Meteosat-10. Such a height bias correction achieves on average about 50% of the reduction of VRMS differences of the direct height reassignment. Results for other satellites are more ambiguous but still encouraging. Given that such a height bias correction can be applied to all AMVs from a geostationary satellite, the method exhibits a promising approach for the assimilation of AMVs in numerical weather prediction models in the future.

Corresponding author address: Martin Weissmann, LMU Meteorologie, Theresienstraße 37, 80333 Munich, Germany. E-mail: martin.weissmann@lmu.de

Abstract

This study uses lidar observations from the polar-orbiting Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite to correct operational atmospheric motion vector (AMV) pressure heights. This intends to reduce the height assignment error of AMVs for their use in data assimilation. Additionally, AMVs are treated as winds in a vertical layer as proposed by several recent studies. Corrected and uncorrected AMV winds are evaluated using short-term forecasts of the global forecasting system of the German Weather Service. First, a direct lidar-based height reassignment of AMVs with collocated CALIPSO observations is evaluated. Assigning AMV winds from Meteosat-10 to ~120-hPa-deep layers below the lidar cloud top reduces the vector root-mean-square (VRMS) differences of AMVs from Meteosat-10 by 8%–15%. However, such a direct reassignment can only be applied to collocated AMV–CALIPSO observations that compose a comparably small subset of all AMVs. Second, CALIPSO observations are used to derive statistical height bias correction functions for a general height correction of all operational AMVs from Meteosat-10. Such a height bias correction achieves on average about 50% of the reduction of VRMS differences of the direct height reassignment. Results for other satellites are more ambiguous but still encouraging. Given that such a height bias correction can be applied to all AMVs from a geostationary satellite, the method exhibits a promising approach for the assimilation of AMVs in numerical weather prediction models in the future.

Corresponding author address: Martin Weissmann, LMU Meteorologie, Theresienstraße 37, 80333 Munich, Germany. E-mail: martin.weissmann@lmu.de
Save
  • Baker, W. E., and Coauthors, 2014: Lidar-measured wind profiles: The missing link in the global observing system. Bull. Amer. Meteor. Soc., 95, 543564, doi:10.1175/BAMS-D-12-00164.1.

    • Search Google Scholar
    • Export Citation
  • Borde, R., M. Doutriaux-Boucher, G. Dew, and M. Carranza, 2014: A direct link between feature tracking and height assignment of operational EUMETSAT atmospheric motion vectors. J. Atmos. Oceanic Technol., 31, 3346, doi:10.1175/JTECH-D-13-00126.1.

    • Search Google Scholar
    • Export Citation
  • Bormann, N., and J.-N. Thépaut, 2004: Impact of MODIS polar winds in ECMWF’s 4DVAR data assimilation system. Mon. Wea. Rev., 132, 929940, doi:10.1175/1520-0493(2004)132<0929:IOMPWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bormann, N., S. Saarinen, G. Kelly, and J.-N. Thépaut, 2003: The spatial structure of observation errors in atmospheric motion vectors from geostationary satellite data. Mon. Wea. Rev., 131, 706718, doi:10.1175/1520-0493(2003)131<0706:TSSOOE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bresky, W. C., J. M. Daniels, A. A. Bailey, and S. T. Wanzong, 2012: New methods toward minimizing the slow speed bias associated with atmospheric motion vectors. J. Appl. Meteor. Climatol., 51, 21372151, doi:10.1175/JAMC-D-11-0234.1.

    • Search Google Scholar
    • Export Citation
  • Cotton, J., 2012: Fifth analysis of the data displayed on the NWP SAF AMV monitoring website. EUMETSAT Doc. NWPSAF-MO-TR-027, 42 pp. [Available online at http://nwpsaf.eu/monitoring/amv/nwpsaf_mo_tr_027.pdf.]

  • Di Michele, S., T. McNally, P. Bauer, and I. Genkova, 2013: Quality assessment of cloud-top height estimates from satellite IR radiances using the CALIPSO lidar. IEEE Trans. Geosci. Remote Sens., 51, 24542464, doi:10.1109/TGRS.2012.2210721.

    • Search Google Scholar
    • Export Citation
  • Folger, K., and M. Weissmann, 2014: Height correction of atmospheric motion vectors using satellite lidar observations from CALIPSO. J. Appl. Meteor. Climatol., 53, 18091819, doi:10.1175/JAMC-D-13-0337.1.

    • Search Google Scholar
    • Export Citation
  • Hautecoeur, O., R. Borde, M. Doutriaux-Boucher, and M. Carranza, 2014: EUMETSAT operational dual-Metop winds products. Proc. 12th Int. Winds Workshop, Copenhagen, Denmark, EUMETSAT. [Available online at http://www.eumetsat.int/website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_CONF_P61_S2_04_HAUTECOE_V&RevisionSelectionMethod=LatestReleased&Rendition=Web.]

  • Hernandez-Carrascal, A., and N. Bormann, 2014: Atmospheric motion vectors from model simulations. Part II: Interpretation as spatial and vertical averages of wind and role of clouds. J. Appl. Meteor. Climatol., 53, 6582, doi:10.1175/JAMC-D-12-0337.1.

    • Search Google Scholar
    • Export Citation
  • Hunt, W. H., D. M. Winker, M. A. Vaughan, K. A. Powell, P. L. Lucker, and C. Weimer, 2009: CALIPSO lidar description and performance assessment. J. Atmos. Oceanic Technol., 26, 12141228, doi:10.1175/2009JTECHA1223.1.

    • Search Google Scholar
    • Export Citation
  • Illingworth, A. J., and Coauthors, 2015: The EarthCARE satellite: The next step forward in global measurements of clouds, aerosols, precipitation, and radiation. Bull. Amer. Meteor. Soc., 96, 13111332, doi:10.1175/BAMS-D-12-00227.1.

    • Search Google Scholar
    • Export Citation
  • Joo, S., J. Eyre, and R. Marriott, 2013: The impact of MetOp and other satellite data within the Met Office global NWP system using an adjoint-based sensitivity method. Mon. Wea. Rev., 141, 33313342, doi:10.1175/MWR-D-12-00232.1.

    • Search Google Scholar
    • Export Citation
  • Lazzara, M., R. Dworak, D. Santek, B. Hoover, C. Velden, and J. Key, 2014: High-latitude atmospheric motion vectors from composite satellite data. J. Appl. Meteor. Climatol., 53, 534547, doi:10.1175/JAMC-D-13-0160.1.

    • Search Google Scholar
    • Export Citation
  • Lean, P., S. Migliorini, and G. Kelly, 2015: Understanding atmospheric motion vector vertical representativity using a simulation study and first-guess departure statistics. J. Appl. Meteor. Climatol., 54, 24792500, doi:10.1175/JAMC-D-15-0030.1.

    • Search Google Scholar
    • Export Citation
  • Majewski, D., and Coauthors, 2002: The operational global icosahedral–hexagonal gridpoint model GME: Description and high-resolution tests. Mon. Wea. Rev., 130, 319338, doi:10.1175/1520-0493(2002)130<0319:TOGIHG>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., 1996: Report from the working group on verification statistics. Proc Third Int. Winds Workshop, Ascona, Switzerland, EUMETSAT. [Available online at http://cimss.ssec.wisc.edu/iwwg/iww3/p17-19_WGReport3.pdf.]

  • Nieman, S. J., W. P. Menzel, C. M. Hayden, D. Gray, S. T. Wanzong, C. S. Velden, and J. Daniels, 1997: Fully automated cloud-drift winds in NESDIS operations. Bull. Amer. Meteor. Soc., 78, 11211133, doi:10.1175/1520-0477(1997)078<1121:FACDWI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Salonen, K., J. Cotton, N. Bormann, and M. Forsythe, 2015: Characterizing AMV height-assignment error by comparing best-fit pressures statistics from the Met Office and ECMWF data assimilation systems. J. Appl. Meteor. Climatol., 54, 225242, doi:10.1175/JAMC-D-14-0025.1.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., K. Holmlund, J. Hoffman, B. Strauss, B. Mason, V. Gaertner, A. Koch, and L. Van De Berg, 1993: Operational cloud-motion winds from Meteosat infrared images. J. Appl. Meteor., 32, 12061225, doi:10.1175/1520-0450(1993)032<1206:OCMWFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A. Ratier, 2002: An introduction to Meteosat Second Generation (MSG). Bull. Amer. Meteor. Soc., 83, 977992, doi:10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simmer, C., and Coauthors, 2016: HErZ: The German Hans-Ertel Centre for Weather Research. Bull. Amer. Meteor. Soc., 97, 10571068, doi:10.1175/BAMS-D-13-00227.1.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., and K. M. Bedka, 2009: Identifying the uncertainty in determining satellite-derived atmospheric motion vector height attribution. J. Appl. Meteor. Climatol., 48, 450463, doi:10.1175/2008JAMC1957.1.

    • Search Google Scholar
    • Export Citation
  • Velden, C. S., and Coauthors, 2005: Recent innovations in deriving tropospheric winds from meteorological satellites. Bull. Amer. Meteor. Soc., 86, 205223, doi:10.1175/BAMS-86-2-205.

    • Search Google Scholar
    • Export Citation
  • Weissmann, M., R. H. Langland, C. Cardinali, P. M. Pauley, and S. Rahm, 2012: Influence of airborne Doppler wind lidar profiles near Typhoon Sinlaku on ECMWF and NOGAPS forecasts. Quart. J. Roy. Meteor. Soc., 138, 118130, doi:10.1002/qj.896.

    • Search Google Scholar
    • Export Citation
  • Weissmann, M., K. Folger, and H. Lange, 2013: Height correction of atmospheric motion vectors using airborne lidar observations. J. Appl. Meteor. Climatol., 52, 18681877, doi:10.1175/JAMC-D-12-0233.1.

    • Search Google Scholar
    • Export Citation
  • Weissmann, M., and Coauthors, 2014: Initial phase of the Hans-Ertel Centre for Weather Research—A virtual centre at the interface of basic and applied weather and climate. Meteor. Z., 23, 193208, doi:10.1127/0941-2948/2014/0558.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., M. A. Vaughan, A. H. Omar, Y. Hu, K. A. Powell, Z. Liu, W. H. Hunt, and S. A. Young, 2009: Overview of the CALIPSO mission and CALIOP data processing algorithms. J. Atmos. Oceanic Technol., 26, 23102323, doi:10.1175/2009JTECHA1281.1.

    • Search Google Scholar
    • Export Citation
  • Winker, D. M., and Coauthors, 2010: The CALIPSO mission: A global 3D view of aerosols and clouds. Bull. Amer. Meteor. Soc., 91, 12111229, doi:10.1175/2010BAMS3009.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 239 93 15
PDF Downloads 132 41 3