Meteosat-Based Characterization of the Spatiotemporal Evolution of Warm Convective Cloud Fields over Central Europe

Sebastian Bley Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by Sebastian Bley in
Current site
Google Scholar
PubMed
Close
,
Hartwig Deneke Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by Hartwig Deneke in
Current site
Google Scholar
PubMed
Close
, and
Fabian Senf Leibniz Institute for Tropospheric Research, Leipzig, Germany

Search for other papers by Fabian Senf in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The spatiotemporal evolution of warm convective cloud fields over central Europe is investigated on the basis of 30 cases using observations from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board the geostationary Meteosat platforms. Cloud fields are tracked in successive satellite images using cloud motion vectors. The time-lagged autocorrelation is calculated for spectral reflectance and cloud property fields using boxes of 16 × 16 pixels and adopting both Lagrangian and Eulerian perspectives. The 0.6-μm reflectance, cloud optical depth, and water path show a similar characteristic Lagrangian decorrelation time of about 30 min. In contrast, significantly lower decorrelation times are observed for the cloud effective radius and droplet density. It is shown that the Eulerian decorrelation time can be decomposed into an advective component and a convective component using the spatial autocorrelation function. In an Eulerian frame cloud fields generally decorrelate faster than in a Lagrangian one. The Eulerian decorrelation time contains contributions from the spatial decorrelation of the cloud field advected by the horizontal wind. A typical spatial decorrelation length of 7 km is observed, which suggests that sampling of SEVIRI observations is better in the temporal domain than in the spatial domain when investigating small-scale convective clouds. An along-track time series of box-averaged cloud liquid water path is derived and compared with the time series that would be measured at a fixed location. Supported by previous results, it is argued that this makes it possible to discriminate between local changes such as condensation and evaporation on the one hand and advective changes on the other hand.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-15-0335.s1.

Corresponding author address: Sebastian Bley, Remote Sensing of Atmospheric Processes, Leibniz Institute for Tropospheric Research, Permoserstr. 15, Leipzig, Germany. E-mail: bley@tropos.de

Abstract

The spatiotemporal evolution of warm convective cloud fields over central Europe is investigated on the basis of 30 cases using observations from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on board the geostationary Meteosat platforms. Cloud fields are tracked in successive satellite images using cloud motion vectors. The time-lagged autocorrelation is calculated for spectral reflectance and cloud property fields using boxes of 16 × 16 pixels and adopting both Lagrangian and Eulerian perspectives. The 0.6-μm reflectance, cloud optical depth, and water path show a similar characteristic Lagrangian decorrelation time of about 30 min. In contrast, significantly lower decorrelation times are observed for the cloud effective radius and droplet density. It is shown that the Eulerian decorrelation time can be decomposed into an advective component and a convective component using the spatial autocorrelation function. In an Eulerian frame cloud fields generally decorrelate faster than in a Lagrangian one. The Eulerian decorrelation time contains contributions from the spatial decorrelation of the cloud field advected by the horizontal wind. A typical spatial decorrelation length of 7 km is observed, which suggests that sampling of SEVIRI observations is better in the temporal domain than in the spatial domain when investigating small-scale convective clouds. An along-track time series of box-averaged cloud liquid water path is derived and compared with the time series that would be measured at a fixed location. Supported by previous results, it is argued that this makes it possible to discriminate between local changes such as condensation and evaporation on the one hand and advective changes on the other hand.

Denotes Open Access content.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-15-0335.s1.

Corresponding author address: Sebastian Bley, Remote Sensing of Atmospheric Processes, Leibniz Institute for Tropospheric Research, Permoserstr. 15, Leipzig, Germany. E-mail: bley@tropos.de
Save
  • Albrecht, B. A., 1989: Aerosols, cloud microphysics, and fractional cloudiness. Science, 245, 12271230, doi:10.1126/science.245.4923.1227.

    • Search Google Scholar
    • Export Citation
  • Bedka, K. M., and J. R. Mecikalski, 2005: Application of satellite-derived atmospheric motion vectors for estimating mesoscale flows. J. Appl. Meteor., 44, 17611772, doi:10.1175/JAM2264.1.

    • Search Google Scholar
    • Export Citation
  • Bley, S., and H. Deneke, 2013: A threshold-based cloud mask for the high-resolution visible channel of Meteosat Second Generation SEVIRI. Atmos. Meas. Tech., 6, 27132723, doi:10.5194/amt-6-2713-2013.

    • Search Google Scholar
    • Export Citation
  • Brenguier, J.-L., H. Pawlowska, L. Schüller, R. Preusker, J. Fischer, and Y. Fouquart, 2000: Radiative properties of boundary layer clouds: Droplet effective radius versus number concentration. J. Atmos. Sci., 57, 803821, doi:10.1175/1520-0469(2000)057<0803:RPOBLC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, A., and Coauthors, 2002: Large-eddy simulation of the diurnal cycle of shallow cumulus convection over land. Quart. J. Roy. Meteor. Soc., 128, 10751093, doi:10.1256/003590002320373210.

    • Search Google Scholar
    • Export Citation
  • Cahalan, R. F., D. A. Short, and G. R. North, 1982: Cloud fluctuation statistics. Mon. Wea. Rev., 110, 2643, doi:10.1175/1520-0493(1982)110<0026:CFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carbajal Henken, C., M. J. Schmeits, H. Deneke, and R. A. Roebeling, 2011: Using MSG-SEVIRI cloud physical properties and weather radar observations for the detection of Cb/TCu clouds. J. Appl. Meteor. Climatol., 50, 15871600, doi:10.1175/2011JAMC2601.1.

    • Search Google Scholar
    • Export Citation
  • Clement, A. C., R. Burgman, and J. R. Norris, 2009: Observational and model evidence for positive low-level cloud feedback. Science, 325, 460464, doi:10.1126/science.1171255.

    • Search Google Scholar
    • Export Citation
  • Coakley, J. A., M. A. Friedman, and W. R. Tahnk, 2005: Retrieval of cloud properties for partly cloudy imager pixels. J. Atmos. Oceanic Technol., 22, 317, doi:10.1175/JTECH-1681.1.

    • Search Google Scholar
    • Export Citation
  • Davis, A., A. Marshak, W. Wiscombe, and R. Cahalan, 1996: Scale invariance of liquid water distributions in marine stratocumulus. Part I: Spectral properties and stationarity issues. J. Atmos. Sci., 53, 15381558, doi:10.1175/1520-0469(1996)053<1538:SIOLWD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deneke, H. M., and R. A. Roebeling, 2010: Downscaling of Meteosat SEVIRI 0.6 and 0.8 μm channel radiances utilizing the high-resolution visible channel. Atmos. Chem. Phys., 10, 97619772, doi:10.5194/acp-10-9761-2010.

    • Search Google Scholar
    • Export Citation
  • Deneke, H. M., W. H. Knap, and C. Simmer, 2009: Multiresolution analysis of the temporal variance and correlation of transmittance and reflectance of an atmospheric column. J. Geophys. Res., 114, D17206, doi:10.1029/2008JD011680.

    • Search Google Scholar
    • Export Citation
  • Derrien, M., and H. Le Gléau, 2005: MSG/SEVIRI cloud mask and type from SAFNWC. Int. J. Remote Sens., 26, 47074732, doi:10.1080/01431160500166128.

    • Search Google Scholar
    • Export Citation
  • Dipankar, A., B. Stevens, R. Heinze, C. Moseley, G. Zängl, M. Giorgetta, and S. Brdar, 2015: Large eddy simulation using the general circulation model ICON. J. Adv. Model. Earth Syst., 7, 963986, doi:10.1002/2015MS000431.

    • Search Google Scholar
    • Export Citation
  • Dorrestijn, J., D. T. Crommelin, A. P. Siebesma, and H. J. J. Jonker, 2013: Stochastic parameterization of shallow cumulus convection estimated from high-resolution model data. Theor. Comput. Fluid Dyn., 27, 133148, doi:10.1007/s00162-012-0281-y.

    • Search Google Scholar
    • Export Citation
  • Feijt, A., and H. Jonker, 2000: Comparison of scaling parameters from spatial and temporal distributions of cloud properties. J. Geophys. Res., 105, 29 08929 097, doi:10.1029/2000JD900414.

    • Search Google Scholar
    • Export Citation
  • García-Pereda, J., 2013: High resolution winds (HRW—PGE09 v4.0). Algorithm Theoretical Basis Doc. SAF/NWC/CDOP/INM/SCI/ATBD/09, 78 pp. [Available online at http://www.nwcsaf.org/HTMLContributions/SUM/SAF-NWC-CDOP2-INM-SCI-ATBD-09_v4.0.pdf.]

  • Hammer, A., D. Heinemann, E. Lorenz, and B. Lückehe, 1999: Short-term forecasting of solar radiation: A statistical approach using satellite data. Sol. Energy, 67, 139150, doi:10.1016/S0038-092X(00)00038-4.

    • Search Google Scholar
    • Export Citation
  • Han, Q., W. B. Rossow, and A. A. Lacis, 1994: Near-global survey of effective droplet radii in liquid water clouds using ISCCP data. J. Climate, 7, 465497, doi:10.1175/1520-0442(1994)007<0465:NGSOED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Horvath, A., C. Seethala, and H. Deneke, 2014: View angle dependence of MODIS liquid water path retrievals in warm oceanic clouds. J. Geophys. Res., 119, 83048328, doi:10.1002/2013JD021355.

    • Search Google Scholar
    • Export Citation
  • Jonkheid, B. J., R. A. Roebeling, and E. van Meijgaard, 2012: A fast SEVIRI simulator for quantifying retrieval uncertainties in the CM SAF cloud physical property algorithm. Atmos. Chem. Phys., 12, 10 95710 969, doi:10.5194/acp-12-10957-2012.

    • Search Google Scholar
    • Export Citation
  • Koren, I., L. Oreopoulos, G. Feingold, L. A. Remer, and O. Altaratz, 2008: How small is a small cloud? Atmos. Chem. Phys., 8, 38553864, doi:10.5194/acp-8-3855-2008.

    • Search Google Scholar
    • Export Citation
  • Lenderink, G., and Coauthors, 2004: The diurnal cycle of shallow cumulus clouds over land: A single-column model intercomparison study. Quart. J. Roy. Meteor. Soc., 130, 33393364, doi:10.1256/qj.03.122.

    • Search Google Scholar
    • Export Citation
  • Lensky, I. M., and D. Rosenfeld, 2008: Clouds-Aerosols-Precipitation Satellite Analysis Tool (CAPSAT). Atmos. Chem. Phys., 8, 67396753, doi:10.5194/acp-8-6739-2008.

    • Search Google Scholar
    • Export Citation
  • Marshak, A., S. Platnick, T. Várnai, G. Wen, and R. F. Cahalan, 2006: Impact of three-dimensional radiative effects on satellite retrievals of cloud droplet sizes. J. Geophys. Res., 111, D09207, doi:10.1029/2005JD006686.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., M. Koenig, and C. P. Jewett, 2013: Application of high-resolution visible sharpening of partly cloudy pixels in Meteosat Second Generation infrared imagery. Atmos. Res., 134, 111, doi:10.1016/j.atmosres.2013.07.014.

    • Search Google Scholar
    • Export Citation
  • Nakajima, T., and M. D. King, 1990: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory. J. Atmos. Sci., 47, 18781893, doi:10.1175/1520-0469(1990)047<1878:DOTOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Nicholls, S., and J. Leighton, 1986: An observational study of the structure of stratiform cloud sheets: Part I. Structure. Quart. J. Roy. Meteor. Soc., 112, 431460, doi:10.1002/qj.49711247209.

    • Search Google Scholar
    • Export Citation
  • Quaas, J., O. Boucher, and U. Lohmann, 2006: Constraining the total aerosol indirect effect in the LMDZ and ECHAM4 GCMs using MODIS satellite data. Atmos. Chem. Phys., 6, 947955, doi:10.5194/acp-6-947-2006.

    • Search Google Scholar
    • Export Citation
  • Roebeling, R. A., A. J. Feijt, and P. Stammes, 2006: Cloud property retrievals for climate monitoring: Implications of differences between Spinning Enhanced Visible and Infrared Imager (SEVIRI) on Meteosat-8 and Advanced Very High Resolution Radiometer (AVHRR) on NOAA-17. J. Geophys. Res., 111, D20210, doi:10.1029/2005JD006990.

    • Search Google Scholar
    • Export Citation
  • Roebeling, R. A., H. M. Deneke, and A. J. Feijt, 2008: Validation of cloud liquid water path retrievals from SEVIRI using one year of CloudNET observations. J. Appl. Meteor. Climatol., 47, 206222, doi:10.1175/2007JAMC1661.1.

    • Search Google Scholar
    • Export Citation
  • Rossow, W. B., and L. C. Garder, 1993: Cloud detection using satellite measurements of infrared and visible radiances for ISCCP. J. Climate, 6, 23412369, doi:10.1175/1520-0442(1993)006<2341:CDUSMO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., P. Pili, S. Tjemkes, D. Just, J. Kerkmann, S. Rota, and A. Ratier, 2002: An introduction to Meteosat Second Generation (MSG). Bull. Amer. Meteor. Soc., 83, 977992, doi:10.1175/1520-0477(2002)083<0977:AITMSG>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schulz, J., and Coauthors, 2009: Operational climate monitoring from space: the EUMETSAT Satellite Application Facility on Climate Monitoring (CM-SAF). Atmos. Chem. Phys., 9, 16871709, doi:10.5194/acp-9-1687-2009.

    • Search Google Scholar
    • Export Citation
  • Senf, F., F. Dietzsch, A. Hünerbein, and H. Deneke, 2015: Characterization of initiation and growth of selected severe convective storms over central Europe with MSG-SEVIRI. J. Appl. Meteor. Climatol., 54, 207224, doi:10.1175/JAMC-D-14-0144.1.

    • Search Google Scholar
    • Export Citation
  • Slobodda, J., A. Hünerbein, R. Lindstrot, R. Preusker, K. Ebell, and J. Fischer, 2015: Multichannel analysis of correlation length of SEVIRI images around ground-based cloud observatories to determine their representativeness. Atmos. Meas. Tech., 8, 567578, doi:10.5194/amt-8-567-2015.

    • Search Google Scholar
    • Export Citation
  • Stuhlmann, R., A. Rodriguez, S. Tjemkes, J. Grandell, A. Arriaga, J.-L. Bézy, D. Aminou, and P. Bensi, 2005: Plans for EUMETSAT’s Third Generation Meteosat geostationary satellite programme. Adv. Space Res., 36, 975981, doi:10.1016/j.asr.2005.03.091.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., J. T. Fasullo, and J. Kiehl, 2009: Earth’s global energy budget. Bull. Amer. Meteor. Soc., 90, 311323, doi:10.1175/2008BAMS2634.1.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., and Coauthors, 2007: Thin liquid water clouds: Their importance and our challenge. Bull. Amer. Meteor. Soc., 88, 177190, doi:10.1175/BAMS-88-2-177.

    • Search Google Scholar
    • Export Citation
  • Von Storch, H., and F. W. Zwiers, 2002: Statistical Analysis in Climate Research. Cambridge University Press, 496 pp.

  • Wolters, E. L. A., H. M. Deneke, B. J. J. M. van den Hurk, J. F. Meirink, and R. A. Roebeling, 2010: Broken and inhomogeneous cloud impact on satellite cloud particle effective radius and cloud-phase retrievals. J. Geophys. Res., 115, D10214, doi:10.1029/2009JD012205.

    • Search Google Scholar
    • Export Citation
  • Wood, R., and D. L. Hartmann, 2006: Spatial variability of liquid water path in marine low cloud: The importance of mesoscale cellular convection. J. Climate, 19, 17481764, doi:10.1175/JCLI3702.1.

    • Search Google Scholar
    • Export Citation
  • Zinner, T., and B. Mayer, 2006: Remote sensing of stratocumulus clouds: Uncertainties and biases due to inhomogeneity. J. Geophys. Res., 111, D14209, doi:10.1029/2005JD006955.

    • Search Google Scholar
    • Export Citation
  • Zinner, T., H. Mannstein, and A. Tafferner, 2008: Cb-TRAM: Tracking and monitoring severe convection from onset over rapid development to mature phase using multi-channel Meteosat-8 SEVIRI data. Meteor. Atmos. Phys., 101, 191210, doi:10.1007/s00703-008-0290-y.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 377 78 9
PDF Downloads 533 186 16