A New Convective Velocity Scale for Studying Diurnal Urban Heat Island Circulation

Yifan Fan Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China

Search for other papers by Yifan Fan in
Current site
Google Scholar
PubMed
Close
,
Yuguo Li Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China

Search for other papers by Yuguo Li in
Current site
Google Scholar
PubMed
Close
,
Xiaoxue Wang Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China

Search for other papers by Xiaoxue Wang in
Current site
Google Scholar
PubMed
Close
, and
Franco Catalano Climate Modeling and Impacts Laboratory, Department of Sustainability, Casaccia Research Centre, ENEA, Rome, Italy

Search for other papers by Franco Catalano in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Urban heat island circulation establishes an urban dome under stable stratification and no background wind conditions. Small-scale water models have been a very useful tool in the exploration of the mechanisms by which urban domes and their associated wind flows are formed. Data are available from a number of water-tank heat island models. Data from field measurements, computational fluid dynamics, and small-scale water-tank experiments are compared in this paper. The small-scale water-tank experiments were found to produce relatively low radial velocities, such as the radial horizontal velocity. Different relevant velocity scales developed in the literature were reviewed. The influence of the Prandtl number on convective flows was analyzed. The analysis resulted in a new convective velocity scale that is a function of the Prandtl number, and the new scale was found to work well. This new development is expected to render small-scale models more useful in urban wind studies. The new convective velocity scale may be extended to water-modeling studies of other buoyancy-driven airflows.

Corresponding author address: Yifan Fan, The University of Hong Kong, Dept. of Mechanical Engineering, Rm. G05, Yam Pak Bldg., Pok Fu Lam Rd. 79C, Hong Kong 999077, Hong Kong. E-mail: u3002019@connect.hku.hk

Abstract

Urban heat island circulation establishes an urban dome under stable stratification and no background wind conditions. Small-scale water models have been a very useful tool in the exploration of the mechanisms by which urban domes and their associated wind flows are formed. Data are available from a number of water-tank heat island models. Data from field measurements, computational fluid dynamics, and small-scale water-tank experiments are compared in this paper. The small-scale water-tank experiments were found to produce relatively low radial velocities, such as the radial horizontal velocity. Different relevant velocity scales developed in the literature were reviewed. The influence of the Prandtl number on convective flows was analyzed. The analysis resulted in a new convective velocity scale that is a function of the Prandtl number, and the new scale was found to work well. This new development is expected to render small-scale models more useful in urban wind studies. The new convective velocity scale may be extended to water-modeling studies of other buoyancy-driven airflows.

Corresponding author address: Yifan Fan, The University of Hong Kong, Dept. of Mechanical Engineering, Rm. G05, Yam Pak Bldg., Pok Fu Lam Rd. 79C, Hong Kong 999077, Hong Kong. E-mail: u3002019@connect.hku.hk
Save
  • Agee, E. M., 1984: Observations from space and thermal convection: A historical perspective. Bull. Amer. Meteor. Soc., 65, 938–949, doi:10.1175/1520-0477(1984)065<0938:OFSATC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baik, J.-J., 1992: Response of a stably stratified atmosphere to low-level heating—An application to the heat island problem. J. Appl. Meteor., 31, 291–303, doi:10.1175/1520-0450(1992)031<0291:ROASSA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baker, M. B., and R. J. Charlson, 1990: Bistability of CCN concentrations and thermodynamics in the cloud-topped boundary layer. Nature, 345, 142–145, doi:10.1038/345142a0.

    • Search Google Scholar
    • Export Citation
  • Banta, R. M., and Coauthors, 1998: Daytime buildup and nighttime transport of urban ozone in the boundary layer during a stagnation episode. J. Geophys. Res., 103, 22 519–22 544, doi:10.1029/98JD01020.

    • Search Google Scholar
    • Export Citation
  • Bejan, A., 2004: Convection Heat Transfer. John Wiley and Sons, 694 pp.

  • Catalano, F., A. Cenedese, S. Falasca, and M. Moroni, 2012a: Numerical and experimental simulations of local winds. National Security and Human Health Implications of Climate Change, H. J. S. Fernando et al., Eds., Springer, 199–218, doi:10.1007/978-94-007-2430-3_17.

  • Catalano, F., M. Moroni, V. Dore, and A. Cenedese, 2012b: An alternative scaling for unsteady penetrative free convection. J. Geophys. Res., 117, D18102, doi:10.1029/2012JD018229.

    • Search Google Scholar
    • Export Citation
  • Cenedese, A., and P. Monti, 2003: Interaction between an inland urban heat island and a sea-breeze flow: A laboratory study. J. Appl. Meteor., 42, 1569–1583, doi:10.1175/1520-0450(2003)042<1569:IBAIUH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Colomer, J., B. Boubnov, and H. Fernando, 1999: Turbulent convection from isolated sources. Dyn. Atmos. Oceans, 30, 125–148, doi:10.1016/S0377-0265(99)00023-8.

    • Search Google Scholar
    • Export Citation
  • Cushman-Roisin, B., and J. M. Beckers, 2011: Introduction to Geophysical Fluid Dynamics: Physical and Numerical Aspects. Academic Press, 830 pp.

  • Deardorff, J. W., 1970: Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. J. Atmos. Sci., 27, 1211–1213, doi:10.1175/1520-0469(1970)027<1211:CVATSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Eckert, E., and T. W. Jackson, 1950: Analysis of turbulent free-convection boundary layer on flat plate. Lewis Flight Propulsion Laboratory Tech. Rep. 2207, 23 pp. [Available online at http://www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA382013.]

  • Falasca, S., M. Moroni, and A. Cenedese, 2013: Laboratory simulations of an urban heat island in a stratified atmospheric boundary layer. J. Visualization, 16, 39–45, doi:10.1007/s12650-012-0150-1.

    • Search Google Scholar
    • Export Citation
  • Falasca, S., F. Catalano, and M. Moroni, 2016: Numerical study of the daytime planetary boundary layer over an idealized urban area: Influence of surface properties, anthropogenic heat flux, and geostrophic wind intensity. J. Appl. Meteor. Climatol., 55, 1021–1039, doi:10.1175/JAMC-D-15-0135.1.

    • Search Google Scholar
    • Export Citation
  • Fannelöp, T. K., 1994: Fluid Mechanics for Industrial Safety and Environmental Protection. Elsevier Science, 523 pp.

  • Feingold, G., I. Koren, H. Wang, H. Xue, and W. A. Brewer, 2010: Precipitation-generated oscillations in open cellular cloud fields. Nature, 466, 849–852, doi:10.1038/nature09314.

    • Search Google Scholar
    • Export Citation
  • Gebhart, B., Y. Jaluria, R. L. Mahajan, and B. Sammakia, 1988: Buoyancy-Induced Flows and Transport. Hemisphere Publishing, 1001 pp.

  • Graham, A., 1934: Shear patterns in an unstable layer of air. Philos. Trans. Roy. Soc., A232, 285–296, doi:10.1098/rsta.1934.0008.

    • Search Google Scholar
    • Export Citation
  • Heikes, K., L. Ransohoff, and R. Small, 1990: Numerical simulation of small area fires. Atmos. Environ., 24A, 297–307, doi:10.1016/0960-1686(90)90110-9.

    • Search Google Scholar
    • Export Citation
  • Helfand, H. M., and E. Kalnay, 1983: A model to determine open or closed cellular convection. J. Atmos. Sci., 40, 631–650, doi:10.1175/1520-0469(1983)040<0631:AMTDOO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hibberd, M., and B. Sawford, 1994: Design criteria for water tank models of dispersion in the planetary convective boundary layer. Bound.-Layer Meteor., 67, 97–118, doi:10.1007/BF00705509.

    • Search Google Scholar
    • Export Citation
  • Hidalgo, J., V. Masson, and L. Gimeno, 2010: Scaling the daytime urban heat island and urban-breeze circulation. J. Appl. Meteor. Climatol., 49, 889–901, doi:10.1175/2009JAMC2195.1.

    • Search Google Scholar
    • Export Citation
  • Hogg, J., and G. Ahlers, 2013: Reynolds-number measurements for low-Prandtl-number turbulent convection of large-aspect-ratio samples. J. Fluid Mech., 725, 664–680, doi:10.1017/jfm.2013.179.

    • Search Google Scholar
    • Export Citation
  • Hu, X.-M., P. M. Klein, M. Xue, J. K. Lundquist, F. Zhang, and Y. Qi, 2013: Impact of low-level jets on the nocturnal urban heat island intensity in Oklahoma City. J. Appl. Meteor. Climatol., 52, 1779–1802, doi:10.1175/JAMC-D-12-0256.1.

    • Search Google Scholar
    • Export Citation
  • Husar, R. B., and E. M. Sparrow, 1968: Patterns of free convection flow adjacent to horizontal heated surfaces. Int. J. Heat Mass Transfer, 11, 1206–1208, doi:10.1016/0017-9310(68)90036-7.

    • Search Google Scholar
    • Export Citation
  • Kaimal, J., J. Wyngaard, D. Haugen, O. Coté, Y. Izumi, S. Caughey, and C. Readings, 1976: Turbulence structure in the convective boundary layer. J. Atmos. Sci., 33, 2152–2169, doi:10.1175/1520-0469(1976)033<2152:TSITCB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, R., 1975: On cellular cloud patterns. Part 1: Mathematical model. J. Atmos. Sci., 32, 1353–1363, doi:10.1175/1520-0469(1975)032<1353:OCCPPM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kristóf, G., N. Rácz, and M. Balogh, 2009: Adaptation of pressure based CFD solvers for mesoscale atmospheric problems. Bound.-Layer Meteor., 131, 85–103, doi:10.1007/s10546-008-9325-7.

    • Search Google Scholar
    • Export Citation
  • Liang, M., and T. C. Keener, 2015: Atmospheric feedback of urban boundary layer with implications for climate adaptation. Environ. Sci. Technol., 49, 10 598–10 606, doi:10.1021/acs.est.5b02444.

    • Search Google Scholar
    • Export Citation
  • Lin, Y.-L., and H.-Y. Chun, 1991: Effects of diabatic cooling in a shear flow with a critical level. J. Atmos. Sci., 48, 2476–2491, doi:10.1175/1520-0469(1991)048<2476:EODCIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • List, E., 1982: Turbulent jets and plumes. Annu. Rev. Fluid Mech., 14, 189–212, doi:10.1146/annurev.fl.14.010182.001201.

  • Lu, J., S. P. Arya, W. H. Snyder, and R. E. Lawson Jr., 1997a: A laboratory study of the urban heat island in a calm and stably stratified environment. Part I: Temperature field. J. Appl. Meteor., 36, 1377–1391, doi:10.1175/1520-0450(1997)036<1377:ALSOTU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lu, J., S. P. Arya, W. H. Snyder, and R. E. Lawson Jr., 1997b: A laboratory study of the urban heat island in a calm and stably stratified environment. Part II: Velocity field. J. Appl. Meteor., 36, 1392–1402, doi:10.1175/1520-0450(1997)036<1392:ALSOTU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Miao, S., F. Chen, M. A. LeMone, M. Tewari, Q. Li, and Y. Wang, 2009: An observational and modeling study of characteristics of urban heat island and boundary layer structures in Beijing. J. Appl. Meteor. Climatol., 48, 484–501, doi:10.1175/2008JAMC1909.1.

    • Search Google Scholar
    • Export Citation
  • Ostrach, S., 1982: Low-gravity fluid flows. Annu. Rev. Fluid Mech., 14, 313–345, doi:10.1146/annurev.fl.14.010182.001525.

  • Poreh, M., 1996: Investigation of heat islands using small scale models. Atmos. Environ., 30, 467–474, doi:10.1016/1352-2310(95)00011-9.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., Y. Kaufman, and I. Koren, 2006: Switching cloud cover and dynamical regimes from open to closed Benard cells in response to the suppression of precipitation by aerosols. Atmos. Chem. Phys., 6, 2503–2511, doi:10.5194/acp-6-2503-2006.

    • Search Google Scholar
    • Export Citation
  • Ryu, Y.-H., J.-J. Baik, and J.-Y. Han, 2013: Daytime urban breeze circulation and its interaction with convective cells. Quart. J. Roy. Meteor. Soc., 139, 401–413, doi:10.1002/qj.1973.

    • Search Google Scholar
    • Export Citation
  • Saitoh, T. S., and N. Yamada, 2004: Experimental and numerical investigation of thermal plume in urban surface layer. Exp. Therm. Fluid Sci., 28, 585–595, doi:10.1016/j.expthermflusci.2003.09.002.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., and Y. L. Lin, 1982: The addition of heat to a stratified airstream with application to the dynamics of orographic rain. Quart. J. Roy. Meteor. Soc., 108, 353–378, doi:10.1002/qj.49710845605.

    • Search Google Scholar
    • Export Citation
  • Starr Malkus, J., and M. E. Stern, 1953: The flow of a stable atmosphere over a heated island, Part 1. J. Meteor., 10, 30–41, doi:10.1175/1520-0469(1953)010<0030:TFOASA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stevens, B., G. Vali, K. Comstock, R. Wood, M. C. van Zanten, P. H. Austin, C. S. Bretherton, and D. H. Lenschow, 2005: Pockets of open cells and drizzle in marine stratocumulus. Bull. Amer. Meteor. Soc., 86, 51–57, doi:10.1175/BAMS-86-1-51.

    • Search Google Scholar
    • Export Citation
  • Uno, I., S. Wakamatsu, H. Ueda, and A. Nakamura, 1988: An observational study of the structure of the nocturnal urban boundary layer. Bound.-Layer Meteor., 45, 59–82, doi:10.1007/BF00120815.

    • Search Google Scholar
    • Export Citation
  • Verzicco, R., and R. Camussi, 1999: Prandtl number effects in convective turbulence. J. Fluid Mech., 383, 55–73, doi:10.1017/S0022112098003619.

    • Search Google Scholar
    • Export Citation
  • Vukovich, F. M., 1971: Theoretical analysis of the effect of mean wind and stability on a heat island circulation characteristic of an urban complex. Mon. Wea. Rev., 99, 919–926, doi:10.1175/1520-0493(1971)099<0919:TAOTEO>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and G. Feingold, 2009a: Modeling mesoscale cellular structures and drizzle in marine stratocumulus. Part I: Impact of drizzle on the formation and evolution of open cells. J. Atmos. Sci., 66, 3237–3256, doi:10.1175/2009JAS3022.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H., and G. Feingold, 2009b: Modeling mesoscale cellular structures and drizzle in marine stratocumulus. Part II: The microphysics and dynamics of the boundary region between open and closed cells. J. Atmos. Sci., 66, 3257–3275, doi:10.1175/2009JAS3120.1.

    • Search Google Scholar
    • Export Citation
  • Wang, W., 2009: The influence of thermally-induced mesoscale circulations on turbulence statistics over an idealized urban area under a zero background wind. Bound.-Layer Meteor., 131, 403–423, doi:10.1007/s10546-009-9378-2.

    • Search Google Scholar
    • Export Citation
  • Wang, X., and Y. Li, 2016: Predicting urban heat island circulation using CFD. Build. Environ., 99, 82–97, doi:10.1016/j.buildenv.2016.01.020.

    • Search Google Scholar
    • Export Citation
  • Willis, G., and J. Deardorff, 1974: A laboratory model of the unstable planetary boundary layer. J. Atmos. Sci., 31, 1297–1307, doi:10.1175/1520-0469(1974)031<1297:ALMOTU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Worster, M. G., 1986: The axisymmetric laminar plume: Asymptotic solution for large Prandtl number. Stud. Appl. Math., 75, 139–152, doi:10.1002/sapm1986752139.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J., O. Coté, and Y. Izumi, 1971: Local free convection, similarity, and the budgets of shear stress and heat flux. J. Atmos. Sci., 28, 1171–1182, doi:10.1175/1520-0469(1971)028<1171:LFCSAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yoshikado, H., 1992: Numerical study of the daytime urban effect and its interaction with the sea breeze. J. Appl. Meteor., 31, 1146–1164, doi:10.1175/1520-0450(1992)031<1146:NSOTDU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Yuan, R., X. Wu, T. Luo, H. Liu, and J. Sun, 2011: A review of water tank modeling of the convective atmospheric boundary layer. J. Wind Eng. Ind. Aerodyn., 99, 1099–1114, doi:10.1016/j.jweia.2011.07.003.

    • Search Google Scholar
    • Export Citation
  • Zilitinkevich, S. S., and Coauthors, 2006: The influence of large convective eddies on the surface-layer turbulence. Quart. J. Roy. Meteor. Soc., 132, 1426–1456, doi:10.1256/qj.05.79.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2860 1547 124
PDF Downloads 1222 247 0