The Observation Record Length Necessary to Generate Robust Soil Moisture Percentiles

Trent W. Ford Department of Geography and Environmental Resources, Southern Illinois University, Carbondale, Illinois

Search for other papers by Trent W. Ford in
Current site
Google Scholar
PubMed
Close
,
Qing Wang Department of Geography and Environmental Resources, Southern Illinois University, Carbondale, Illinois

Search for other papers by Qing Wang in
Current site
Google Scholar
PubMed
Close
, and
Steven M. Quiring Department of Geography, The Ohio State University, Columbus, Ohio

Search for other papers by Steven M. Quiring in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The ability to use in situ soil moisture for large-scale soil moisture monitoring, model and satellite validation, and climate investigations is contingent on properly standardizing soil moisture observations. Percentiles are a useful method for homogenizing in situ soil moisture. However, very few stations have been continuously monitoring in situ soil moisture for 20 years or more. Therefore, one challenge in evaluating soil moisture is determining whether the period of record is sufficient to produce a stable distribution from which to generate percentiles. In this study daily in situ soil moisture observations, measured at three separate depths in the soil column at 15 stations in the United States and Canada, are used to determine the record length that is necessary to generate a stable soil moisture distribution. The Anderson–Darling test is implemented, both with and without a Bonferroni adjustment, to quantify the necessary record length. The authors evaluate how the necessary record length varies by location, measurement depth, and month. They find that between 3 and 15 years of data are required to produce stable distributions, with the majority of stations requiring only 3–6 years of data. Not surprisingly, more years of data are required to obtain stable estimates of the 5th and 95th percentiles than of the first, second, and third quartiles of the soil moisture distribution. Overall these results suggest that 6 years of continuous, daily in situ soil moisture data will be sufficient in most conditions to create stable and robust percentiles.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-16-0143.s1.

Corresponding author address: Trent W. Ford, Department of Geography and Environmental Resources, Faner Hall MS 4514, Carbondale, IL 62901. E-mail: twford@siu.edu

Abstract

The ability to use in situ soil moisture for large-scale soil moisture monitoring, model and satellite validation, and climate investigations is contingent on properly standardizing soil moisture observations. Percentiles are a useful method for homogenizing in situ soil moisture. However, very few stations have been continuously monitoring in situ soil moisture for 20 years or more. Therefore, one challenge in evaluating soil moisture is determining whether the period of record is sufficient to produce a stable distribution from which to generate percentiles. In this study daily in situ soil moisture observations, measured at three separate depths in the soil column at 15 stations in the United States and Canada, are used to determine the record length that is necessary to generate a stable soil moisture distribution. The Anderson–Darling test is implemented, both with and without a Bonferroni adjustment, to quantify the necessary record length. The authors evaluate how the necessary record length varies by location, measurement depth, and month. They find that between 3 and 15 years of data are required to produce stable distributions, with the majority of stations requiring only 3–6 years of data. Not surprisingly, more years of data are required to obtain stable estimates of the 5th and 95th percentiles than of the first, second, and third quartiles of the soil moisture distribution. Overall these results suggest that 6 years of continuous, daily in situ soil moisture data will be sufficient in most conditions to create stable and robust percentiles.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-16-0143.s1.

Corresponding author address: Trent W. Ford, Department of Geography and Environmental Resources, Faner Hall MS 4514, Carbondale, IL 62901. E-mail: twford@siu.edu
Save
  • Anderson, T. W., and D. A. Darling, 1954: A test of goodness of fit. J. Amer. Stat. Assoc., 49, 765769, doi:10.1080/01621459.1954.10501232.

    • Search Google Scholar
    • Export Citation
  • Brocca, L., F. Melone, T. Moramarco, and R. Morbidelli, 2009: Soil moisture temporal stability over experimental areas in central Italy. Geoderma, 148, 364374, doi:10.1016/j.geoderma.2008.11.004.

    • Search Google Scholar
    • Export Citation
  • Cook, D. R., 2016: Soil Water and Temperature System instrument handbook. Atmospheric Radiation Measurement Climate Research Facility Tech. Rep. DOE/SC-ARM-TR-063, 30 pp. [Available online at http://www.arm.gov/publications/tech_reports/handbooks/swats_handbook.pdf.]

  • Cosh, M. H., T. J. Jackson, P. Starks, and G. Heathman, 2006: Temporal stability of surface soil moisture in the Little Washita River watershed and its applications in satellite soil moisture product validation. J. Hydrol., 323, 168177, doi:10.1016/j.jhydrol.2005.08.020.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and S. Manabe, 1988: The influence of potential evaporation on the variabilities of simulated soil wetness and climate. J. Climate, 1, 523547, doi:10.1175/1520-0442(1988)001<0523:TIOPEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Diamond, H. J., and Coauthors, 2013: U.S. Climate Reference Network after one decade of operations: Status and assessment. Bull. Amer. Meteor. Soc., 94, 485498, doi:10.1175/BAMS-D-12-00170.1.

    • Search Google Scholar
    • Export Citation
  • Dorigo, W. A., and Coauthors, 2011: The International Soil Moisture Network: A data hosting facility for global in situ soil moisture measurements. Hydrol. Earth Syst. Sci., 15, 16751698, doi:10.5194/hess-15-1675-2011.

    • Search Google Scholar
    • Export Citation
  • Ek, M. B., and A. A. M. Holtslag, 2004: Influence of soil moisture on boundary layer cloud development. J. Hydrometeor., 5, 8699, doi:10.1175/1525-7541(2004)005<0086:IOSMOB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Engmann, S., and D. Cousineau, 2011: Comparing distributions: The two-sample Anderson-Darling test as an alternative to the Kolmogorov-Smirnoff test. J. App. Quant. Methods, 6, 117.

    • Search Google Scholar
    • Export Citation
  • Entekhabi, D., and Coauthors, 2010: The Soil Moisture Active Passive (SMAP) mission. Proc. IEEE, 98, 704716, doi:10.1109/JPROC.2010.2043918.

    • Search Google Scholar
    • Export Citation
  • Entin, J. K., A. Robock, K. Y. Vinnikov, S. E. Hollinger, S. Liu, and A. Namkhai, 2000: Temporal and spatial scales of observed soil moisture variations in the extratropics. J. Geophys. Res., 105, 11 86511 877, doi:10.1029/2000JD900051.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., and H. van den Dool, 2004: Climate Prediction Center global monthly soil moisture data set at 0.5° resolution for 1948 to present. J. Geophys. Res., 109, D10102, doi:10.1029/2003JD004345.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., and E. A. B. Eltahir, 2003: Atmospheric controls on soil moisture-boundary layer interactions. Part I: Framework development. J. Hydrometeor., 4, 552569, doi:10.1175/1525-7541(2003)004<0552:ACOSML>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Findell, K. L., P. Gentine, B. R. Lintner, and B. P. Guillod, 2015: Data length requirements for observational estimates of land-atmosphere coupling strength. J. Hydrometeor., 16, 16151635, doi:10.1175/JHM-D-14-0131.1.

    • Search Google Scholar
    • Export Citation
  • Ford, T. W., D. B. McRoberts, S. M. Quiring, and R. E. Hall, 2015a: On the utility of in situ soil moisture observations for flash drought early warning in Oklahoma, USA. Geophys. Res. Lett., 42, 97909798, doi:10.1002/2015GL066600.

    • Search Google Scholar
    • Export Citation
  • Ford, T. W., A. D. Rapp, and S. M. Quiring, 2015b: Does afternoon precipitation occur preferentially over dry or wet soils in Oklahoma? J. Hydrometeor., 16, 874888, doi:10.1175/JHM-D-14-0005.1.

    • Search Google Scholar
    • Export Citation
  • Gallego-Elvira, B., C. M. Taylor, P. P. Harris, D. Ghent, K. L. Veal, and S. S. Folwell, 2016: Global observational diagnosis of soil moisture control on the land surface energy balance. Geophys. Res. Lett., 43, 26232631, doi:10.1002/2016GL068178.

    • Search Google Scholar
    • Export Citation
  • Gamache, I., and S. Payette, 2004: Height growth response of tree line black spruce to recent climate warming across the forest-tundra of eastern Canada. J. Ecol., 92, 835845, doi:10.1111/j.0022-0477.2004.00913.x.

    • Search Google Scholar
    • Export Citation
  • Gentine, P., A. A. M. Holtslag, F. D’Andrea, and M. Ek, 2013: Surface and atmospheric controls on the onset of moist convection over land. J. Hydrometeor., 14, 14431462, doi:10.1175/JHM-D-12-0137.1.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., and P. A. Dirmeyer, 2013: Interannual variability of land–atmosphere coupling strength. J. Hydrometeor., 14, 16361646, doi:10.1175/JHM-D-12-0171.1.

    • Search Google Scholar
    • Export Citation
  • Guo, Z., P. A. Dirmeyer, T. DelSole, and R. D. Koster, 2012: Rebound in atmospheric predictability and the role of the land surface. J. Climate, 25, 47444749, doi:10.1175/JCLI-D-11-00651.1.

    • Search Google Scholar
    • Export Citation
  • Hirsch, A. L., A. J. Pitman, and J. Kala, 2014: The role of land cover change in modulating the soil moisture-temperature land-atmosphere coupling strength over Australia. Geophys. Res. Lett., 41, 58835890, doi:10.1002/2014GL061179.

    • Search Google Scholar
    • Export Citation
  • Hirschi, M., and Coauthors, 2011: Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat. Geosci., 4, 1721, doi:10.1038/ngeo1032.

    • Search Google Scholar
    • Export Citation
  • Hollinger, S. E., and S. A. Isard, 1994: A soil moisture climatology of Illinois. J. Climate, 7, 822833, doi:10.1175/1520-0442(1994)007<0822:ASMCOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Illston, B. G., J. B. Basara, and K. C. Crawford, 2004: Seasonal to interannual variations of soil moisture measured in Oklahoma. Int. J. Climatol., 24, 18831896, doi:10.1002/joc.1077.

    • Search Google Scholar
    • Export Citation
  • Illston, B. G., J. B. Basara, C. A. Fiebrich, K. C. Crawford, E. Hunt, D. K. Fisher, R. Elliot, and K. Humes, 2008: Mesoscale monitoring of soil moisture across a statewide network. J. Atmos. Oceanic Technol., 25, 167182, doi:10.1175/2007JTECHA993.1.

    • Search Google Scholar
    • Export Citation
  • Kerr, Y. H., P. Waldteufel, J. P. Wigneron, J. Martinuzzi, J. Font, and M. Berger, 2001: Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission. Geo. Remote Sens. IEEE Trans., 39, 17291735, doi:10.1109/36.942551.

    • Search Google Scholar
    • Export Citation
  • Khong, A., J. K. Wang, S. M. Quiring, and T. W. Ford, 2015: Soil moisture variability in Iowa. Int. J. Climatol., 35, 28372848, doi:10.1002/joc.4176.

    • Search Google Scholar
    • Export Citation
  • Kohler, M., N. Kalthof, and C. Kottmeier, 2010: The impact of soil moisture modifications on CBL characteristics in West Africa: A case-study from the AMMA campaign. Quart. J. Roy. Meteor. Soc., 136, 442455, doi:10.1002/qj.430.

    • Search Google Scholar
    • Export Citation
  • Koster, R. D., and Coauthors, 2010: Contribution of land surface initialization to subseasonal forecast skill: First results from a multi-model experiment. Geophys. Res. Lett., 37, L02402, doi:10.1029/2009GL041677.

    • Search Google Scholar
    • Export Citation
  • Legates, D. R., R. Mahmood, D. F. Levia, T. L. DeLiberty, S. M. Quiring, C. Houser, and F. E. Nelson, 2011: Soil moisture: A central and unifying theme in physical geography. Prog. Phys. Geogr., 35, 6586, doi:10.1177/0309133310386514.

    • Search Google Scholar
    • Export Citation
  • Luo, L., E. F. Wood, and M. Pan, 2007: Bayesian merging of multiple climate model forecasts for seasonal hydrological predictions. J. Geophys. Res., 112, D10102, doi:10.1029/2006JD007655.

    • Search Google Scholar
    • Export Citation
  • Margolis, H. A., L. B. Flanagan, and B. D. Amiro, 2006: The Fluxnet-Canada Research Network: Influence of climate and disturbance on carbon cycling in forests and peatlands. Agric. For. Meteor., 140, 15, doi:10.1016/j.agrformet.2006.08.013.

    • Search Google Scholar
    • Export Citation
  • Martínez-Fernández, J., and A. Ceballos, 2003: Temporal stability of soil moisture in a large-field experiment in Spain. Soil. Sci. Soc. Amer. J., 67, 16471656, doi:10.2136/sssaj2003.1647.

    • Search Google Scholar
    • Export Citation
  • Meng, L., and Y. Shen, 2014: On the relationship of soil moisture and extreme temperatures in East China. Earth Interact., 18, doi:10.1175/2013EI000551.1.

    • Search Google Scholar
    • Export Citation
  • Miralles, D. G., M. J. van den Berg, A. J. Teuling, and R. A. M. de Jeu, 2012: Soil moisture-temperature coupling: A multiscale observational analysis. Geophys. Res. Lett., 39, L21707, doi:10.1029/2012GL053703.

    • Search Google Scholar
    • Export Citation
  • Mitchell, K. E., and Coauthors, 2004: The multi-institution North American Land Data Assimilation System (NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res., 109, D07S90, doi:10.1029/2003JD003823.

    • Search Google Scholar
    • Export Citation
  • Morgan, J. F., 2007: p value fetishism and use of the Bonferroni adjustment. Evidence Based Ment. Health, 10, 3435, doi:10.1136/ebmh.10.2.34.

    • Search Google Scholar
    • Export Citation
  • Mueller, B., and S. I. Seneviratne, 2012: Hot days induced by precipitation deficits at the global scale. Proc. Natl. Acad. Sci. USA, 109, 12 39812 403, doi:10.1073/pnas.1204330109.

    • Search Google Scholar
    • Export Citation
  • Myoung, B., and J. W. Nielsen-Gammon, 2010: The convective instability pathway to warm season drought in Texas. Part I: The role of convective inhibition and its modulation by soil moisture. J. Climate, 23, 44614473, doi:10.1175/2010JCLI2946.1.

    • Search Google Scholar
    • Export Citation
  • Perneger, T. V., 1998: What’s wrong with Bonferroni adjustments. BMJ, 316, 12361238, doi:10.1136/bmj.316.7139.1236.

  • Quiring, S. M., and T. N. Papakryiakou, 2003: An evaluation of agricultural drought indices for the Canadian prairies. Agric. For. Meteor., 118, 4962, doi:10.1016/S0168-1923(03)00072-8.

    • Search Google Scholar
    • Export Citation
  • Quiring, S. M., T. W. Ford, J. K. Wang, A. Khong, E. Harris, T. Lindgren, D. W. Goldberg, and Z. Li, 2016: The North American Soil Moisture Database: Development and applications. Bull. Amer. Meteor. Soc., 97, 14411459, doi:10.1175/BAMS-D-13-00263.1.

    • Search Google Scholar
    • Export Citation
  • Robock, A., K. Y. Vinnikov, G. Srinivasan, J. K. Entin, S. E. Hollinger, N. A. Speranskaya, S. Liu, and A. Namkhai, 2000: The Global Soil Moisture Data Bank. Bull. Amer. Meteor. Soc., 81, 12811299, doi:10.1175/1520-0477(2000)081<1281:TGSMDB>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Russo, S., and A. Sterl, 2012: Global changes in seasonal means and extremes of precipitation from daily climate model data. J. Geophys. Res., 117, D01108, doi:10.1029/2011JD016260.

    • Search Google Scholar
    • Export Citation
  • Schaake, J. C., and Coauthors, 2004: An intercomparison of soil moisture fields in the North American Land Data Assimilation System (NLDAS). J. Geophys. Res., 109, D01S90, doi:10.1029/2002JD003309.

    • Search Google Scholar
    • Export Citation
  • Schaefer, G. L., M. H. Cosh, and T. J. Jackson, 2007: The USDA Natural Resources Conservation Service Soil Climate Analysis Network (SCAN). J. Atmos. Oceanic Technol., 24, 20732077, doi:10.1175/2007JTECHA930.1.

    • Search Google Scholar
    • Export Citation
  • Sheffield, J., and Coauthors, 2014: A drought monitoring and forecasting system for sub-Sahara African water resources and food security. Bull. Amer. Meteor. Soc., 95, 861882, doi:10.1175/BAMS-D-12-00124.1.

    • Search Google Scholar
    • Export Citation
  • Stéfanon, M., P. Drobinski, F. D’Andrea, C. Lebeaupin-Brossier, and S. Bastin, 2014: Soil moisture-temperature feedbacks at meso-scale during summer heat waves over western Europe. Climate Dyn., 42, 13091324, doi:10.1007/s00382-013-1794-9.

    • Search Google Scholar
    • Export Citation
  • Svoboda, M., and Coauthors, 2002: The Drought Monitor. Bull. Amer. Meteor. Soc., 83, 11811190, doi:10.1175/1520-0477(2002)083<1181:TDM>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., A. Gounou, F. Guichard, P. P. Harris, R. J. Ellis, F. Couvreux, and M. De Kauwe, 2011: Frequency of Sahelian storm initiation enhanced over mesoscale soil-moisture patterns. Nat. Geosci., 4, 430433, doi:10.1038/ngeo1173.

    • Search Google Scholar
    • Export Citation
  • Taylor, C. M., R. A. M. de Jeu, F. Guichard, P. P. Harris, and W. A. Dorigo, 2012: Afternoon rain more likely over drier soils. Nature, 489, 423426, doi:10.1038/nature11377.

    • Search Google Scholar
    • Export Citation
  • Vautard, R., and Coauthors, 2007: Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit. Geophys. Res. Lett., 34, L07711, doi:10.1029/2006GL028001.

    • Search Google Scholar
    • Export Citation
  • Viglione, A., F. Laio, and P. Claps, 2007: A comparison of homogeneity tests for regional frequency analysis. Water Resour. Res., 43, W03428, doi:10.1029/2006WR005095.

    • Search Google Scholar
    • Export Citation
  • Wagner, W., W. Dorigo, R. de Jeu, D. Fernandez, J. Benveniste, E. Haas, and M. Ertl, 2012: Fusion of active and passive microwave observations to create an essential climate variable data record on soil moisture. Proc. XXII ISPRS Congress, Melbourne, Australia, ISPRS, 315–321. [Available online at http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/I-7/315/2012/isprsannals-I-7-315-2012.pdf.]

  • Wood, A. W., 2008: The University of Washington Surface Water Monitor: An experimental platform for national hydrologic assessment and prediction. 22nd Conf. on Hydrology, New Orleans, LA, Amer. Meteor. Soc., 5.2. [Available online at https://ams.confex.com/ams/pdfpapers/134844.pdf.]

  • Wu, W., and R. E. Dickinson, 2004: Time scales of layered soil moisture memory in the context of land-atmosphere interaction. J. Climate, 17, 27522764, doi:10.1175/1520-0442(2004)017<2752:TSOLSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wu, W., M. A. Geller, and R. E. Dickinson, 2002: The response of soil moisture to long-term variability of precipitation. J. Hydrometeor., 3, 604613, doi:10.1175/1525-7541(2002)003<0604:TROSMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 968 264 18
PDF Downloads 771 180 12