The Potential Predictability of Fire Danger Provided by Numerical Weather Prediction

Francesca Di Giuseppe European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Francesca Di Giuseppe in
Current site
Google Scholar
PubMed
Close
,
Florian Pappenberger European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Florian Pappenberger in
Current site
Google Scholar
PubMed
Close
,
Fredrik Wetterhall European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Fredrik Wetterhall in
Current site
Google Scholar
PubMed
Close
,
Blazej Krzeminski European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Search for other papers by Blazej Krzeminski in
Current site
Google Scholar
PubMed
Close
,
Andrea Camia Joint Research Centre, Ispra, Italy

Search for other papers by Andrea Camia in
Current site
Google Scholar
PubMed
Close
,
Giorgio Libertá Joint Research Centre, Ispra, Italy

Search for other papers by Giorgio Libertá in
Current site
Google Scholar
PubMed
Close
, and
Jesus San Miguel Joint Research Centre, Ispra, Italy

Search for other papers by Jesus San Miguel in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A global fire danger rating system driven by atmospheric model forcing has been developed with the aim of providing early warning information to civil protection authorities. The daily predictions of fire danger conditions are based on the U.S. Forest Service National Fire-Danger Rating System (NFDRS), the Canadian Forest Service Fire Weather Index Rating System (FWI), and the Australian McArthur (Mark 5) rating systems. Weather forcings are provided in real time by the European Centre for Medium-Range Weather Forecasts forecasting system at 25-km resolution. The global system’s potential predictability is assessed using reanalysis fields as weather forcings. The Global Fire Emissions Database (GFED4) provides 11 yr of observed burned areas from satellite measurements and is used as a validation dataset. The fire indices implemented are good predictors to highlight dangerous conditions. High values are correlated with observed fire, and low values correspond to nonobserved events. A more quantitative skill evaluation was performed using the extremal dependency index, which is a skill score specifically designed for rare events. It revealed that the three indices were more skillful than the random forecast to detect large fires on a global scale. The performance peaks in the boreal forests, the Mediterranean region, the Amazon rain forests, and Southeast Asia. The skill scores were then aggregated at the country level to reveal which nations could potentially benefit from the system information to aid decision-making and fire control support. Overall it was found that fire danger modeling based on weather forecasts can provide reasonable predictability over large parts of the global landmass.

Denotes Open Access content.

Corresponding author address: Francesca Di Giuseppe, ECMWF, Shinfield Park, Reading RG2 9AX, United Kingdom. E-mail: digiuseppe@ecmwf.int

Abstract

A global fire danger rating system driven by atmospheric model forcing has been developed with the aim of providing early warning information to civil protection authorities. The daily predictions of fire danger conditions are based on the U.S. Forest Service National Fire-Danger Rating System (NFDRS), the Canadian Forest Service Fire Weather Index Rating System (FWI), and the Australian McArthur (Mark 5) rating systems. Weather forcings are provided in real time by the European Centre for Medium-Range Weather Forecasts forecasting system at 25-km resolution. The global system’s potential predictability is assessed using reanalysis fields as weather forcings. The Global Fire Emissions Database (GFED4) provides 11 yr of observed burned areas from satellite measurements and is used as a validation dataset. The fire indices implemented are good predictors to highlight dangerous conditions. High values are correlated with observed fire, and low values correspond to nonobserved events. A more quantitative skill evaluation was performed using the extremal dependency index, which is a skill score specifically designed for rare events. It revealed that the three indices were more skillful than the random forecast to detect large fires on a global scale. The performance peaks in the boreal forests, the Mediterranean region, the Amazon rain forests, and Southeast Asia. The skill scores were then aggregated at the country level to reveal which nations could potentially benefit from the system information to aid decision-making and fire control support. Overall it was found that fire danger modeling based on weather forecasts can provide reasonable predictability over large parts of the global landmass.

Denotes Open Access content.

Corresponding author address: Francesca Di Giuseppe, ECMWF, Shinfield Park, Reading RG2 9AX, United Kingdom. E-mail: digiuseppe@ecmwf.int
Save
  • Baines, P. G., and T. N. Palmer, 1990: Rationale for a new physically-based parametrization of subgrid scale orographic effects. ECMWF Tech. Memo. 169, 11 pp. [Available online at http://www.ecmwf.int/sites/default/files/elibrary/1990/7875-rationale-new-physically-based-parametrization-subgrid-scale-orographic-effects.pdf.]

  • Bartalev, S., A. Belward, D. Erchov, and A. Isaev, 2002: The land cover map of northern Eurasia: Method, product, and initial users’ feedback—Global Land Cover 2000. European Commission Joint Research Centre Workshop Pres., 39 pp. [Available online at http://forobs.jrc.ec.europa.eu/products/glc2000/publications/workshop/march2002/GLC2000_march2002_bartalev.pps.]

  • Bartalev, S., A. Belward, D. Erchov, and A. Isaev, 2003: A new SPOT4-VEGETATION derived land cover map of northern Eurasia. Int. J. Remote Sens., 24, 19771982, doi:10.1080/0143116031000066297.

    • Search Google Scholar
    • Export Citation
  • Bartholomé, E., and A. Belward, 2005: GLC2000: A new approach to global land cover mapping from Earth observation data. Int. J. Remote Sens., 26, 19591977, doi:10.1080/01431160412331291297.

    • Search Google Scholar
    • Export Citation
  • Boussetta, S., G. Balsamo, A. Beljaars, T. Kral, and L. Jarlan, 2013: Impact of a satellite-derived leaf area index monthly climatology in a global numerical weather prediction model. Int. J. Remote Sens., 34, 35203542, doi:10.1080/01431161.2012.716543.

    • Search Google Scholar
    • Export Citation
  • Bradshaw, L. S., J. E. Deeming, R. E. Burgan, and J. D. Cohen, 1983: The 1978 National Fire-Danger Rating System: Technical documentation. USDA Forest Service Intermountain Forest and Range Experiment Station General Tech. Rep. INT-169, 44 pp. [Available online at http://www.fs.fed.us/rm/pubs_int/int_gtr169.pdf.]

  • Bradstock, R. A., J. E. Williams, and A. M. Gill, 2002: Flammable Australia: The Fire Regimes and Biodiversity of a Continent. Cambridge University Press, 462 pp.

  • Buizza, R., M. Miller, and T. Palmer, 1999: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system. Quart. J. Roy. Meteor. Soc., 125, 28872908, doi:10.1002/qj.49712556006.

    • Search Google Scholar
    • Export Citation
  • Burgan, R. E., 1988: 1988 revisions to the 1978 National Fire-Danger Rating System. USDA Forest Service Southeastern Forest Experiment Station Research Paper SE-273, 39 pp. [Available online at http://www.srs.fs.usda.gov/pubs/rp/rp_se273.pdf.]

  • Burgan, R. E., R. W. Klaver, and J. M. Klaver, 1998: Fuel models and fire potential from satellite and surface observations. Int. J. Wildland Fire, 8, 159170, doi:10.1071/WF9980159.

    • Search Google Scholar
    • Export Citation
  • Camia, A., P. Barbosa, G. Amatulli, and J. San-Miguel-Ayanz, 2006: Fire danger rating in the European Forest Fire Information System (EFFIS): Current developments. For. Ecol. Manage., 234, S20, doi:10.1016/j.foreco.2006.08.036.

    • Search Google Scholar
    • Export Citation
  • Chen, D., and H. W. Chen, 2013: Using the Köppen classification to quantify climate variation and change: An example for 1901–2010. Environ. Dev., 6, 6979, doi:10.1016/j.envdev.2013.03.007.

    • Search Google Scholar
    • Export Citation
  • Cohen, J. D., and J. E. Deeming, 1985: The National Fire-Danger Rating System: Basic equations. USDA Forest Service Pacific Southwest Forest and Range Experiment Station General Tech. Rep. PSW-82, 16 pp. [Available online at http://ftp.fs.fed.us/psw/publications/documents/psw_gtr082/psw_gtr082.pdf.]

  • Coles, S., J. Heffernan, and J. Tawn, 1999: Dependence measures for extreme value analyses. Extremes, 2, 339365, doi:10.1023/A:1009963131610.

    • Search Google Scholar
    • Export Citation
  • Courtier, P., J.-N. Thépaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 13671387, doi:10.1002/qj.49712051912.

    • Search Google Scholar
    • Export Citation
  • Cruz, M. G., and M. P. Plucinski, 2007: Billo Road fire: Report on fire behaviour phenomena and suppression activities. Bushfire Cooperative Research Centre Rep. A.07.02, 96 pp. [Available online at http://www.bushfirecrc.com/sites/default/files/managed/resource/billoroadfirefinalreportweb_0.pdf.]

  • Dee, D., and Coauthors, 2011: The ERA-Interim Reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Deeming, J. E., R. E. Burgan, and J. D. Cohen, 1977: The National Fire-Danger Rating System—1978. USDA Forest Service General Tech. Rep. INTUS 39, 49 pp.

  • de Groot, W. J., A. S. Cantin, M. D. Flannigan, A. J. Soja, L. M. Gowman, and A. Newbery, 2013: A comparison of Canadian and Russian boreal forest fire regimes. For. Ecol. Manage., 294, 2334, doi:10.1016/j.foreco.2012.07.033.

    • Search Google Scholar
    • Export Citation
  • Esty, D. C., A. Levy, C. Kim, A. de Sherbinin, T. Srebotnjak, and V. Mara, 2008: 2008 environmental performance index. Yale Center for Environmental Law & Policy, 382 pp. [Available online at http://epi.yale.edu/sites/default/files/2008_epi_report_0.pdf.]

  • Ferro, C. A., 2007: A probability model for verifying deterministic forecasts of extreme events. Wea. Forecasting, 22, 10891100, doi:10.1175/WAF1036.1.

    • Search Google Scholar
    • Export Citation
  • Ferro, C. A., and D. B. Stephenson, 2011: Extremal dependence indices: Improved verification measures for deterministic forecasts of rare binary events. Wea. Forecasting, 26, 699713, doi:10.1175/WAF-D-10-05030.1.

    • Search Google Scholar
    • Export Citation
  • Flannigan, M. D., and T. H. Vonder Haar, 1986: Forest fire monitoring using NOAA satellite AVHRR. Can. J. For. Res., 16, 975982, doi:10.1139/x86-171.

    • Search Google Scholar
    • Export Citation
  • Flannigan, M. D., K. A. Logan, B. D. Amiro, W. R. Skinner, and B. Stocks, 2005: Future area burned in Canada. Climatic Change, 72, 116, doi:10.1007/s10584-005-5935-y.

    • Search Google Scholar
    • Export Citation
  • Flannigan, M. D., M. A. Krawchuk, W. J. de Groot, B. M. Wotton, and L. M. Gowman, 2009: Implications of changing climate for global wildland fire. Int. J. Wildland Fire, 18, 483507, doi:10.1071/WF08187.

    • Search Google Scholar
    • Export Citation
  • Giglio, L., J. Descloitres, C. O. Justice, and Y. J. Kaufman, 2003: An enhanced contextual fire detection algorithm for MODIS. Remote Sens. Environ., 87, 273282, doi:10.1016/S0034-4257(03)00184-6.

    • Search Google Scholar
    • Export Citation
  • Giglio, L., I. Csiszar, and C. O. Justice, 2006: Global distribution and seasonality of active fires as observed with the Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) sensors. J. Geophys. Res., 111, G02016, doi:10.1029/2005JG000142.

    • Search Google Scholar
    • Export Citation
  • Giglio, L., J. T. Randerson, and G. R. Werf, 2013: Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosci., 118, 317328, doi:10.1002/jgrg.20042.

    • Search Google Scholar
    • Export Citation
  • Hantson, S., S. Pueyo, and E. Chuvieco, 2015: Global fire size distribution is driven by human impact and climate. Global Ecol. Biogeogr., 24, 7786, doi:10.1111/geb.12246.

    • Search Google Scholar
    • Export Citation
  • Keetch, J. J., and G. M. Byram, 1968: A drought index for forest fire control. USDA Forest Service Southeastern Forest Experiment Station Research Paper SE-38, 32 pp. [Available online at http://www.srs.fs.usda.gov/pubs/rp/rp_se038.pdf?.]

  • Knote, C., G. Bonafe, and F. Di Giuseppe, 2009: Leaf area index specification for use in mesoscale weather prediction systems. Mon. Wea. Rev., 137, 35353550, doi:10.1175/2009MWR2891.1.

    • Search Google Scholar
    • Export Citation
  • Kottek, M., J. Grieser, C. Beck, B. Rudolf, and F. Rubel, 2006: World map of the Köppen-Geiger climate classification updated. Meteor. Z., 15, 259263, doi:10.1127/0941-2948/2006/0130.

    • Search Google Scholar
    • Export Citation
  • Lott, F., and M. J. Miller, 1997: A new subgrid-scale orographic drag parametrization: Its formulation and testing. Quart. J. Roy. Meteor. Soc., 123, 101127, doi:10.1002/qj.49712353704.

    • Search Google Scholar
    • Export Citation
  • Loveland, T., B. Reed, J. Brown, D. Ohlen, Z. Zhu, L. Yang, and J. Merchant, 2000: Development of a global land cover characteristics database and IGBP discover from 1 km AVHRR data. Int. J. Remote Sens., 21, 13031330, doi:10.1080/014311600210191.

    • Search Google Scholar
    • Export Citation
  • Luke, R. H., and A. G. McArthur, 1978: Bushfires in Australia.Australian Government Publishing Service, 359 pp.

  • Mayaux, P., E. Bartholomé, S. Fritz, and A. Belward, 2004: A new land-cover map of Africa for the year 2000. J. Biogeogr., 31, 861877, doi:10.1111/j.1365-2699.2004.01073.x.

    • Search Google Scholar
    • Export Citation
  • McArthur, A. G., 1966: Weather and grassland fire behaviour. Forestry and Timber Bureau Leaflet 100, 23 pp.

  • McArthur, A. G., 1967: Fire behaviour in eucalypt forests. Forestry and Timber Bureau Leaflet 107, 36 pp.

  • Mölders, N., 2008: Suitability of the Weather Research and Forecasting (WRF) model to predict the June 2005 fire weather for interior Alaska. Wea. Forecasting, 23, 953973, doi:10.1175/2008WAF2007062.1.

    • Search Google Scholar
    • Export Citation
  • Mölders, N., 2010: Comparison of Canadian Forest Fire Danger Rating System and National Fire Danger Rating System fire indices derived from Weather Research and Forecasting (WRF) Model data for the June 2005 interior Alaska wildfires. Atmos. Res., 95, 290306, doi:10.1016/j.atmosres.2009.03.010.

    • Search Google Scholar
    • Export Citation
  • Myneni, R., and Coauthors, 2002: Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ., 83, 214231, doi:10.1016/S0034-4257(02)00074-3.

    • Search Google Scholar
    • Export Citation
  • Noble, I. R., G. A. V. Bary, and A. M. Gill, 1980: McArthur’s fire-danger meters expressed as equations. Aust. J. Ecol., 5, 201203, doi:10.1111/j.1442-9993.1980.tb01243.x.

    • Search Google Scholar
    • Export Citation
  • Pausas, J. G., and S. Paula, 2012: Fuel shapes the fire–climate relationship: Evidence from Mediterranean ecosystems. Global Ecol. Biogeogr., 21, 10741082, doi:10.1111/j.1466-8238.2012.00769.x.

    • Search Google Scholar
    • Export Citation
  • Preisler, H. K., D. R. Brillinger, R. E. Burgan, and J. Benoit, 2004: Probability based models for estimation of wildfire risk. Int. J. Wildland Fire, 13, 133142, doi:10.1071/WF02061.

    • Search Google Scholar
    • Export Citation
  • Preisler, H. K., R. E. Burgan, J. C. Eidenshink, J. M. Klaver, and R. W. Klaver, 2009: Forecasting distributions of large federal-lands fires utilizing satellite and gridded weather information. Int. J. Wildland Fire, 18, 508516, doi:10.1071/WF08032.

    • Search Google Scholar
    • Export Citation
  • Roads, J., F. Fujioka, S. Chen, and R. Burgan, 2005: Seasonal fire danger forecasts for the USA. Int. J. Wildland Fire, 14, 118, doi:10.1071/WF03052.

    • Search Google Scholar
    • Export Citation
  • San-Miguel-Ayanz, J., J. Carlson, M. Alexander, K. Tolhurst, G. Morgan, R. Sneeuwjagt, and M. Dudley, 2003: Current methods to assess fire danger potential. Wildland Fire Danger Estimation and Mapping: The Role of Remote Sensing Data, E. Chuvieco, Ed., Series in Remote Sensing, Vol. 4., World Scientific Publishing, 21–61 pp.

  • Schroeder, W., E. Prins, L. Giglio, I. Csiszar, C. Schmidt, J. Morisette, and D. Morton, 2008: Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data. Remote Sens. Environ., 112, 27112726, doi:10.1016/j.rse.2008.01.005.

    • Search Google Scholar
    • Export Citation
  • Stephenson, D., B. Casati, C. Ferro, and C. Wilson, 2008: The extreme dependency score: A non-vanishing measure for forecasts of rare events. Meteor. Appl., 15, 4150, doi:10.1002/met.53.

    • Search Google Scholar
    • Export Citation
  • Stocks, B. J., T. Lynham, B. Lawson, M. Alexander, C. Van Wagner, R. McAlpine, and D. Dube, 1989: Canadian forest fire danger rating system: An overview. For. Chron., 65, 258265, doi:10.5558/tfc65258-4.

    • Search Google Scholar
    • Export Citation
  • Stocks, B. J., and Coauthors, 2002: Large forest fires in Canada, 1959–1997. J. Geophys. Res., 107, 8149, doi:10.1029/2001JD000484.

  • Swaine, M., 1992: Characteristics of dry forest in West Africa and the influence of fire. J. Veg. Sci., 3, 365374, doi:10.2307/3235762.

    • Search Google Scholar
    • Export Citation
  • Tang, Y., H. Lin, and A. M. Moore, 2008: Measuring the potential predictability of ensemble climate predictions. J. Geophys. Res., 113, D04108, doi:10.1029/2007JD008804.

    • Search Google Scholar
    • Export Citation
  • Taylor, S. W., and M. E. Alexander, 2006: Science, technology, and human factors in fire danger rating: The Canadian experience. Int. J. Wildland Fire, 15, 121135, doi:10.1071/WF05021.

    • Search Google Scholar
    • Export Citation
  • Van Wagner, C. E., 1974: Structure of the Canadian forest fire weather index. Canadian Forestry Service Publ. 1333, 44 pp. [Available online at http://www.cfs.nrcan.gc.ca/bookstore_pdfs/24864.pdf.]

  • Van Wagner, C. E., 1987: Development and structure of the Canadian Forest Fire Weather Index System. Canadian Forestry Service Tech. Rep. 35, 37 pp. [Available online at http://cfs.nrcan.gc.ca/pubwarehouse/pdfs/19927.pdf.]

  • Van Wagner, C. E., and T. L. Pickett, 1985: Equations and FORTRAN program for the Canadian Forest Fire Weather Index System. Canadian Forestry Service Tech. Rep. 33, 18 pp. [Available online at http://cfs.nrcan.gc.ca/pubwarehouse/pdfs/19973.pdf.]

  • Wastl, C., C. Schunk, M. Lüpke, G. Cocca, M. Conedera, E. Valese, and A. Menzel, 2013: Large-scale weather types, forest fire danger, and wildfire occurrence in the Alps. Agric. For. Meteor., 168, 1525, doi:10.1016/j.agrformet.2012.08.011.

    • Search Google Scholar
    • Export Citation
  • Westerling, A. L., H. G. Hidalgo, D. R. Cayan, and T. W. Swetnam, 2006: Warming and earlier spring increase western U.S. forest wildfire activity. Science, 313, 940943, 313, doi:10.1126/science.1128834.

    • Search Google Scholar
    • Export Citation
  • Wooster, M., B. Zhukov, and D. Oertel, 2003: Fire radiative energy for quantitative study of biomass burning: Derivation from the bird experimental satellite and comparison to MODIS fire products. Remote Sens. Environ., 86, 83107, doi:10.1016/S0034-4257(03)00070-1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3461 1185 213
PDF Downloads 2542 725 115