Understanding Orographic Effects on Surface Observations at Macquarie Island

Zhan Wang School of Earth, Atmosphere and Environment, Monash University, Monash, Victoria, Australia

Search for other papers by Zhan Wang in
Current site
Google Scholar
PubMed
Close
,
Danijel Belusic Centre for Ecology and Hydrology, Wallingford, United Kingdom

Search for other papers by Danijel Belusic in
Current site
Google Scholar
PubMed
Close
,
Yi Huang School of Earth, Atmosphere and Environment, Monash University, Monash, and Australian Research Council Centre of Excellence for Climate System Science, Melbourne, Victoria, Australia

Search for other papers by Yi Huang in
Current site
Google Scholar
PubMed
Close
,
Steven T. Siems School of Earth, Atmosphere and Environment, Monash University, Monash, and Australian Research Council Centre of Excellence for Climate System Science, Melbourne, Victoria, Australia

Search for other papers by Steven T. Siems in
Current site
Google Scholar
PubMed
Close
, and
Michael J. Manton School of Earth, Atmosphere and Environment, Monash University, Monash, Victoria, Australia

Search for other papers by Michael J. Manton in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The meteorological observations on Macquarie Island have become of increasing value for efforts to understand the unique nature of atmospheric processes over the Southern Ocean. While the island is of modest elevation (peak altitude of 410 m), the orographic effects on observations on this island are still not clear. High-resolution numerical simulations [Weather Research and Forecasting (WRF) Model] with and without terrain have been used to identify orographic effects for four cases representing common synoptic patterns at Macquarie Island: a cold front, a warm front, postfrontal drizzle, and a midlatitude cyclone. Although the simulations cannot capture every possible feature of the precipitation, preliminary results show that clouds and precipitation can readily be perturbed by the island with the main enhancement of precipitation normally in the lee in accordance with the nondimensional mountain height being much less than 1. The weather station is located at the far north end of the island and is only in the lee to southerly and southwesterly winds, which are normally associated with drizzle. The station is on the upwind side for strong northwesterly winds, which are most common and can bring heavier frontal precipitation. Overall the orographic effect on the precipitation record is not found to be significant, except for the enhancement of drizzle found in southwesterly winds. Given the strong winds over the Southern Ocean and the shallow height of the island, the 3D nondimensional mountain height is smaller than 1 in 93.5% of the soundings. As a result, boundary layer flow commonly passes over the island, with the greatest impact in the lee.

Current affiliation: Swedish Meteorological and Hydrological Institute, Norrköping, Sweden.

Corresponding author address: Steven T. Siems, School of Earth, Atmosphere and Environment, Monash University, Wellington Rd. and Blackburn Rd., Clayton, VIC 3800, Australia. E-mail: steven.siems@monash.edu

Abstract

The meteorological observations on Macquarie Island have become of increasing value for efforts to understand the unique nature of atmospheric processes over the Southern Ocean. While the island is of modest elevation (peak altitude of 410 m), the orographic effects on observations on this island are still not clear. High-resolution numerical simulations [Weather Research and Forecasting (WRF) Model] with and without terrain have been used to identify orographic effects for four cases representing common synoptic patterns at Macquarie Island: a cold front, a warm front, postfrontal drizzle, and a midlatitude cyclone. Although the simulations cannot capture every possible feature of the precipitation, preliminary results show that clouds and precipitation can readily be perturbed by the island with the main enhancement of precipitation normally in the lee in accordance with the nondimensional mountain height being much less than 1. The weather station is located at the far north end of the island and is only in the lee to southerly and southwesterly winds, which are normally associated with drizzle. The station is on the upwind side for strong northwesterly winds, which are most common and can bring heavier frontal precipitation. Overall the orographic effect on the precipitation record is not found to be significant, except for the enhancement of drizzle found in southwesterly winds. Given the strong winds over the Southern Ocean and the shallow height of the island, the 3D nondimensional mountain height is smaller than 1 in 93.5% of the soundings. As a result, boundary layer flow commonly passes over the island, with the greatest impact in the lee.

Current affiliation: Swedish Meteorological and Hydrological Institute, Norrköping, Sweden.

Corresponding author address: Steven T. Siems, School of Earth, Atmosphere and Environment, Monash University, Wellington Rd. and Blackburn Rd., Clayton, VIC 3800, Australia. E-mail: steven.siems@monash.edu
Save
  • Adams, N., 2009: Climate trends at Macquarie Island and expectations of future climate change in the sub-Antarctic. Pap. Proc. Roy. Soc. Tasmania, 143, 18.

    • Search Google Scholar
    • Export Citation
  • Baines, P. G., 1998: Topographic Effects in Stratified Flow. Cambridge University Press, 482 pp.

  • Bates, T. S., and Coauthors, 1998a: Processes controlling the distribution of aerosol particles in the lower marine boundary layer during the First Aerosol Characterization Experiment (ACE 1). J. Geophys. Res., 103, 16 36916 383, doi:10.1029/97JD03720.

    • Search Google Scholar
    • Export Citation
  • Bates, T. S., B. J. Huebert, J. L. Gras, F. B. Griffiths, and P. A. Durkee, 1998b: International global atmospheric chemistry (IGAC) project’s first aerosol characterization experiment (ACE 1): Overview. J. Geophys. Res., 103, 16 29716 318, doi:10.1029/97JD03741.

    • Search Google Scholar
    • Export Citation
  • Bodas-Salcedo, A., K. D. Williams, P. R. Field, and A. P. Lock, 2012: The surface downwelling solar radiation surplus over the Southern Ocean in the Met Office model: The role of midlatitude cyclone clouds. J. Climate, 25, 74677486, doi:10.1175/JCLI-D-11-00702.1.

    • Search Google Scholar
    • Export Citation
  • Boers, R., and P. B. Krummel, 1998: Microphysical properties of boundary layer clouds over the Southern Ocean during ACE 1. J. Geophys. Res., 103, 16 65116 663, doi:10.1029/97JD03280.

    • Search Google Scholar
    • Export Citation
  • Boers, R., J. B. Jensen, and P. B. Krummel, 1998: Microphysical and short-wave radiative structure of stratocumulus clouds over the Southern Ocean: Summer results and seasonal differences. Quart. J. Roy. Meteor. Soc., 124, 151168, doi:10.1002/qj.49712454507.

    • Search Google Scholar
    • Export Citation
  • Brown, R. A., 1980: Longitudinal instabilities and secondary flows in the planetary boundary layer: A review. Rev. Geophys., 18, 683697, doi:10.1029/RG018i003p00683.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., F. F. Hill, and C. W. Pardoe, 1974: Structure and mechanism of precipitation and the effect of orography in a wintertime warm sector. Quart. J. Roy. Meteor. Soc., 100, 309330, doi:10.1002/qj.49710042505.

    • Search Google Scholar
    • Export Citation
  • Cannon, D. J., D. J. Kirshbaum, and S. L. Gray, 2012: Under what conditions does embedded convection enhance orographic precipitation? Quart. J. Roy. Meteor. Soc., 138, 391406, doi:10.1002/qj.926.

    • Search Google Scholar
    • Export Citation
  • Catto, J. L., C. Jakob, G. Berry, and N. Nicholls, 2012: Relating global precipitation to atmospheric fronts. Geophys. Res. Lett., 39, L10805, doi:10.1029/2012GL051736.

    • Search Google Scholar
    • Export Citation
  • Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569585, doi:10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chubb, T. H., J. B. Jensen, S. T. Siems, and M. J. Manton, 2013: In situ observations of supercooled liquid clouds over the Southern Ocean during the HIAPER Pole-to-Pole Observation campaigns. Geophys. Res. Lett., 40, 52805285, doi:10.1002/grl.50986.

    • Search Google Scholar
    • Export Citation
  • Chubb, T. H., Y. Huang, J. B. Jensen, T. Campos, S. T. Siems, and M. J. Manton, 2016: Observations of high droplet number concentrations in Southern Ocean boundary layer clouds. Atmos. Chem. Phys., 16, 971987, doi:10.5194/acp-16-971-2016.

    • Search Google Scholar
    • Export Citation
  • Colle, B. A., 2004: Sensitivity of orographic precipitation to changing ambient conditions and terrain geometries: An idealized modeling perspective. J. Atmos. Sci., 61, 588606, doi:10.1175/1520-0469(2004)061<0588:SOOPTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dee, D., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Ellis, T. D., T. L’Ecuyer, J. M. Haynes, and G. L. Stephens, 2009: How often does it rain over the global oceans? The perspective from CloudSat. Geophys. Res. Lett., 36, L03815, doi:10.1029/2008GL036728.

    • Search Google Scholar
    • Export Citation
  • Farr, T. G., and Coauthors, 2007: The Shuttle Radar Topography Mission. Rev. Geophys., 45, RG2004, doi:10.1029/2005RG000183.

  • Fritts, D. C., and Coauthors, 2015: The Deep Propagating Gravity Wave Experiment (DEEPWAVE): An airborne and ground-based exploration of gravity wave propagation and effects from their sources throughout the lower and middle atmosphere. Bull. Amer. Meteor. Soc., 97, 425453, doi:10.1175/BAMS-D-14-00269.1.

    • Search Google Scholar
    • Export Citation
  • Gras, J. L., 1995: CN, CCN and particle size in Southern Ocean air at Cape Grim. Atmos. Res., 35, 233251, doi:10.1016/0169-8095(94)00021-5.

    • Search Google Scholar
    • Export Citation
  • Hande, L. B., S. T. Siems, and M. J. Manton, 2012a: Observed trends in wind speed over the Southern Ocean. Geophys. Res. Lett., 39, L11802, doi:10.1029/2012GL051734.

    • Search Google Scholar
    • Export Citation
  • Hande, L. B., S. T. Siems, M. J. Manton, and D. Belusic, 2012b: Observations of wind shear over the Southern Ocean. J. Geophys. Res., 117, D12206, doi:10.1029/2012JD017488.

    • Search Google Scholar
    • Export Citation
  • Hande, L. B., S. T. Siems, M. J. Manton, and D. H. Lenschow, 2015: An evaluation of COSMIC radio occultation data in the lower atmosphere over the Southern Ocean. Atmos. Meas. Tech., 8, 97107, doi:10.5194/amt-8-97-2015.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., and J. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129151.

  • Hornberger, G. M., and Coauthors, 2014: Dynamic Earth: GEO Imperatives & Frontiers 2015–2020. NSF Advisory Committee for Geosciences Rep., 41 pp. [Available online at http://www.nsf.gov/geo/acgeo/geovision/nsf_acgeo_dynamic-earth-2015-20.pdf.]

  • Hoskins, B. J., and K. I. Hodges, 2005: A new perspective on Southern Hemisphere storm tracks. J. Climate, 18, 41084129, doi:10.1175/JCLI3570.1.

    • Search Google Scholar
    • Export Citation
  • Houze, R. A., 2012: Orographic effects on precipitating clouds. Rev. Geophys., 50, RG1001, doi:10.1029/2011RG000365.

  • Huang, Y., S. T. Siems, M. J. Manton, A. Protat, and J. Delanoë, 2012: A study on the low-altitude clouds over the Southern Ocean using the DARDAR-MASK. J. Geophys. Res., 117, D18204, doi:10.1029/2012JD017800.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., S. T. Siems, M. J. Manton, and G. Thompson, 2014: An evaluation of WRF simulations of clouds over the Southern Ocean with A-Train observations. Mon. Wea. Rev., 142, 647667, doi:10.1175/MWR-D-13-00128.1.

    • Search Google Scholar
    • Export Citation
  • Huang, Y., C. N. Franklin, S. T. Siems, M. Manton, T. Chubb, A. Lock, and A. Klekociuk, 2015: Evaluation of boundary-layer cloud forecasts over the Southern Ocean in a limited-area numerical weather prediction system using in situ, space-borne and ground-based observations. Quart. J. Roy. Meteor. Soc., 141, 22592276, doi:10.1002/qj.2519.

    • Search Google Scholar
    • Export Citation
  • Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103, doi:10.1029/2008JD009944.

    • Search Google Scholar
    • Export Citation
  • Johansson, B., and D. Chen, 2003: The influence of wind and topography on precipitation distribution in Sweden: Statistical analysis and modelling. Int. J. Climatol., 23, 15231535, doi:10.1002/joc.951.

    • Search Google Scholar
    • Export Citation
  • Jovanovic, B., K. Braganza, D. Collins, and D. Jones, 2012: Climate variations and change evident in high-quality climate data for Australia’s Antarctic and remote island weather stations. Aust. Meteor. Oceanogr. J., 62, 247261.

    • Search Google Scholar
    • Export Citation
  • Kanitz, T., P. Seifert, A. Ansmann, R. Engelmann, D. Althausen, C. Casiccia, and E. G. Rohwer, 2011: Contrasting the impact of aerosols at northern and southern midlatitudes on heterogeneous ice formation. Geophys. Res. Lett., 38, L17802, doi:10.1029/2011GL048532.

    • Search Google Scholar
    • Export Citation
  • Kirshbaum, D. J., and D. R. Durran, 2004: Factors governing cellular convection in orographic precipitation. J. Atmos. Sci., 61, 682698, doi:10.1175/1520-0469(2004)061<0682:FGCCIO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kuettner, J. P., 1971: Cloud bands in the atmosphere. Tellus, 23, 404425, doi:10.1111/j.2153-3490.1971.tb00585.x.

  • Li, J. L., D. E. Waliser, G. Stephens, S. Lee, T. L’Ecuyer, S. Kato, and H. Y. Ma, 2013: Characterizing and understanding radiation budget biases in CMIP3/CMIP5 GCMs, contemporary GCM, and reanalysis. J. Geophys. Res. Atmos., 118, 81668184, doi:10.1002/jgrd.50378.

    • Search Google Scholar
    • Export Citation
  • Ma, L. M., and Z. M. Tan, 2009: Improving the behavior of the cumulus parameterization for tropical cyclone prediction: Convection trigger. Atmos. Res., 92, 190211, doi:10.1016/j.atmosres.2008.09.022.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., R. Marchand, Q. Zhang, and G. Stephens, 2007: Global hydrometeor occurrence as observed by CloudSat: Initial observations from summer 2006. Geophys. Res. Lett., 34, L09808, doi:10.1029/2006GL029017.

    • Search Google Scholar
    • Export Citation
  • Miglietta, M. M., and A. Buzzi, 2001: A numerical study of moist stratified flows over isolated topography. Tellus, 53A, 481499, doi:10.1111/j.1600-0870.2001.00481.x.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., D. E. Waliser, M. J. Miller, M. A. Shapiro, G. R. Asrar, and J. Caughey, 2012: Multiscale convective organization and the YOTC virtual global field campaign. Bull. Amer. Meteor. Soc., 93, 11711187, doi:10.1175/BAMS-D-11-00233.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, A. E., S. T. Siems, M. J. Manton, and A. Nazarov, 2010: A modeling case study of mixed-phase clouds over the Southern Ocean and Tasmania. Mon. Wea. Rev., 138, 839862, doi:10.1175/2009MWR3011.1.

    • Search Google Scholar
    • Export Citation
  • Nugent, A. D., R. B. Smith, and J. R. Minder, 2014: Wind speed control of tropical orographic convection. J. Atmos. Sci., 71, 26952712, doi:10.1175/JAS-D-13-0399.1.

    • Search Google Scholar
    • Export Citation
  • Platnick, S., M. D. King, S. A. Ackerman, W. P. Menzel, B. A. Baum, J. C. Riedi, and R. A. Frey, 2003: The MODIS cloud products: Algorithms and examples from Terra. IEEE Trans. Geosci. Remote Sens., 41, 459473, doi:10.1109/TGRS.2002.808301.

    • Search Google Scholar
    • Export Citation
  • Rasmussen, R. M., P. Smolarkiewicz, and J. Warner, 1989: On the dynamics of Hawaiian cloud bands: Comparison of model results with observations and island climatology. J. Atmos. Sci., 46, 15891608, doi:10.1175/1520-0469(1989)046<1589:OTDOHC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reisner, J. M., and P. K. Smolarkiewicz, 1994: Thermally forced low Froude number flow past three-dimensional obstacles. J. Atmos. Sci., 51, 117133, doi:10.1175/1520-0469(1994)051<0117:TFLFNF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryan, B. F., and K. J. Wilson, 1985: The Australian summertime cool change. Part III: Subsynoptic and mesoscale model. Mon. Wea. Rev., 113, 224240, doi:10.1175/1520-0493(1985)113<0224:TASCCP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schär, C., and D. R. Durran, 1997: Vortex formation and vortex shedding in continuously stratified flows past isolated topography. J. Atmos. Sci., 54, 534554, doi:10.1175/1520-0469(1997)054<0534:VFAVSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Simmonds, I., and K. Keay, 2000: Mean Southern Hemisphere extratropical cyclone behavior in the 40-Year NCEP–NCAR Reanalysis. J. Climate, 13, 873885, doi:10.1175/1520-0442(2000)013<0873:MSHECB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and J. B. Klemp, 2008: A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 34653485, doi:10.1016/j.jcp.2007.01.037.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., 1979: The influence of mountains on the atmosphere. Advances in Geophysics, Vol. 21, Academic Press, 87–230, doi:10.1016/S0065-2687(08)60262-9.

  • Smolarkiewicz, P. K., and R. Rotunno, 1989: Low Froude number flow past three-dimensional obstacles. Part I: Baroclinically generated lee vortices. J. Atmos. Sci., 46, 11541164, doi:10.1175/1520-0469(1989)046<1154:LFNFPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Streten, N. A., 1988: The climate of Macquarie Island and its role in atmospheric monitoring. Pap. Proc. Roy. Soc. Tasmania, 122, 91106.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Trenberth, K. E., and J. T. Fasullo, 2010: Simulation of present-day and twenty-first-century energy budgets of the southern oceans. J. Climate, 23, 440454, doi:10.1175/2009JCLI3152.1.

    • Search Google Scholar
    • Export Citation
  • Vinoth, J., and I. R. Young, 2011: Global estimates of extreme wind speed and wave height. J. Climate, 24, 16471665, doi:10.1175/2010JCLI3680.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Z., S. Siems, D. Belusic, M. Manton, and Y. Huang, 2015: A climatology of the precipitation over the Southern Ocean as observed at Macquarie Island. J. Appl. Meteor. Climatol., 54, 23212337, doi:10.1175/JAMC-D-14-0211.1.

    • Search Google Scholar
    • Export Citation
  • Watson, C. D., and T. P. Lane, 2012: Sensitivities of orographic precipitation to terrain geometry and upstream conditions in idealized simulations. J. Atmos. Sci., 69, 12081231, doi:10.1175/JAS-D-11-0198.1.

    • Search Google Scholar
    • Export Citation
  • Watson, C. D., and T. P. Lane, 2014: Further sensitivities of orographic precipitation to terrain geometry in idealized simulations. J. Atmos. Sci., 71, 30683089, doi:10.1175/JAS-D-13-0318.1.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2004: Toward numerical modeling in the “terra incognita.” J. Atmos. Sci., 61, 18161826, doi:10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 333 76 2
PDF Downloads 205 42 1