Toward Understanding the Properties of High Ice Clouds at the Naqu Site on the Tibetan Plateau Using Ground-Based Active Remote Sensing Measurements Obtained during a Short Period in July 2014

Chuanfeng Zhao College of Global Change and Earth System Science, and State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, and Joint Center for Global Change Studies, Beijing, China

Search for other papers by Chuanfeng Zhao in
Current site
Google Scholar
PubMed
Close
,
Liping Liu Chinese Academy of Meteorological Sciences, Beijing, China

Search for other papers by Liping Liu in
Current site
Google Scholar
PubMed
Close
,
Qianqian Wang College of Global Change and Earth System Science, and State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China

Search for other papers by Qianqian Wang in
Current site
Google Scholar
PubMed
Close
,
Yanmei Qiu College of Global Change and Earth System Science, and State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China

Search for other papers by Yanmei Qiu in
Current site
Google Scholar
PubMed
Close
,
Wei Wang College of Global Change and Earth System Science, and State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China

Search for other papers by Wei Wang in
Current site
Google Scholar
PubMed
Close
,
Yang Wang College of Global Change and Earth System Science, and State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China

Search for other papers by Yang Wang in
Current site
Google Scholar
PubMed
Close
, and
Tianyi Fan College of Global Change and Earth System Science, and State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China

Search for other papers by Tianyi Fan in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This study describes the microphysical properties of high ice clouds (with bases above 5 km) using ground-based millimeter cloud radar cirrus-mode observations over the Naqu site of the Tibetan Plateau (TP) during a short period from 6 to 31 July 2014. Empirical regression equations are applied for the cloud retrievals in which the parameters are given on the basis of a review of existing literature. The results show a unimodal distribution for the cloud ice effective radius re and ice water content with maximum frequencies around 36 μm and 0.001 g m−3, respectively. Analysis shows that clouds with high ice re are more likely to occur at times from late afternoon until nighttime. The clouds with large (small) re mainly occur at low (high) heights and are likely orographic cumulus or stratocumulus (thin cirrus). Further analysis indicates that ice re decreases with increasing height and shows strong positive relationships between ice re (μm) and depth h (m), with a regression equation of re = 35.45 + 0.0023h + (1.7 × 10−7)h2. A good relationship between ice re and temperature T (°C) is found, re = 44.65 + 0.1438T, which could serve as a baseline for retrieval of characteristic ice re properties over the TP.

Corresponding author address: Chuanfeng Zhao, College of Global Change and Earth System Science, Beijing Normal University, 19 XinJieKouWai St., Beijing, 100875, China. E-mail: czhao@bnu.edu.cn

Abstract

This study describes the microphysical properties of high ice clouds (with bases above 5 km) using ground-based millimeter cloud radar cirrus-mode observations over the Naqu site of the Tibetan Plateau (TP) during a short period from 6 to 31 July 2014. Empirical regression equations are applied for the cloud retrievals in which the parameters are given on the basis of a review of existing literature. The results show a unimodal distribution for the cloud ice effective radius re and ice water content with maximum frequencies around 36 μm and 0.001 g m−3, respectively. Analysis shows that clouds with high ice re are more likely to occur at times from late afternoon until nighttime. The clouds with large (small) re mainly occur at low (high) heights and are likely orographic cumulus or stratocumulus (thin cirrus). Further analysis indicates that ice re decreases with increasing height and shows strong positive relationships between ice re (μm) and depth h (m), with a regression equation of re = 35.45 + 0.0023h + (1.7 × 10−7)h2. A good relationship between ice re and temperature T (°C) is found, re = 44.65 + 0.1438T, which could serve as a baseline for retrieval of characteristic ice re properties over the TP.

Corresponding author address: Chuanfeng Zhao, College of Global Change and Earth System Science, Beijing Normal University, 19 XinJieKouWai St., Beijing, 100875, China. E-mail: czhao@bnu.edu.cn
Save
  • Atlas, D., S. Y. Matrosov, A. Heymsfield, M.-D. Chou, and D. B. Wolff, 1995: Radar and radiation properties of ice clouds. J. Appl. Meteor., 34, 23292345, doi:10.1175/1520-0450(1995)034<2329:RARPOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brown, P. R. A., and P. N. Francis, 1995: Improved measurements of the ice water content in cirrus using a total-water probe. J. Atmos. Oceanic Technol., 12, 410414, doi:10.1175/1520-0426(1995)012<0410:IMOTIW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chen, B., and X. Liu, 2005: Seasonal migration of cirrus clouds over the Asian monsoon regions and the Tibetan Plateau measured from MODIS/Terra. Geophys. Res. Lett., 32, L01804, doi:10.1029/2004GL020868.

    • Search Google Scholar
    • Export Citation
  • Chen, G.-S., Z. Liu, and J. E. Kutzbach, 2014: Reexamining the barrier effect of the Tibetan Plateau on the South Asian summer monsoon. Climate Past, 10, 12691275, doi:10.5194/cp-10-1269-2014.

    • Search Google Scholar
    • Export Citation
  • Chen, H., W. Yuan, J. Li, and R. Yu, 2012: A possible cause for different diurnal variations of warm season rainfall as shown in station observations and TRMM 3B42 data over the southeastern Tibetan Plateau. Adv. Atmos. Sci., 29, 193200, doi:10.1007/s00376-011-0218-1.

    • Search Google Scholar
    • Export Citation
  • Delanoë, J., A. Protat, D. Bouniol, A. Heymsfield, A. Bansemer, and P. Brown, 2007: The characterization of ice cloud properties from Doppler radar measurements. J. Appl. Meteor. Climatol., 46, 16821698, doi:10.1175/JAM2543.1.

    • Search Google Scholar
    • Export Citation
  • Dong, X., and G. G. Mace, 2003: Profiles of low-level stratus cloud microphysics deduced from ground-based measurements. J. Atmos. Oceanic Technol., 20, 4253, doi:10.1175/1520-0426(2003)020<0042:POLLSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Donovan, D. P., 2003: Ice-cloud effective particle size parameterization based on combined lidar, radar reflectivity, and mean Doppler velocity measurements. J. Geophys. Res., 108, 4573, doi:10.1029/2003JD003469.

    • Search Google Scholar
    • Export Citation
  • Duan, A. M., and G. X. Wu, 2005: Role of the Tibetan Plateau thermal forcing in the summer climate patterns over subtropical Asia. Climate Dyn., 24, 793807, doi:10.1007/s00382-004-0488-8.

    • Search Google Scholar
    • Export Citation
  • Gao, B.-C., P. Yang, G. Guo, S. K. Park, W. J. Wiscombe, and B. Chen, 2003: Measurements of water vapor and high clouds over the Tibetan Plateau with the Terra MODIS instrument. IEEE Trans. Geosci. Remote Sens., 41, 895900, doi:10.1109/TGRS.2003.810704.

    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., and C. Zhao, 2006: Increased Arctic cloud longwave emissivity associated with pollution from mid-latitudes. Nature, 440, 787789, doi:10.1038/nature04636.

    • Search Google Scholar
    • Export Citation
  • Garrett, T. J., and C. Zhao, 2013: Ground-based remote sensing of thin clouds in the Arctic. Atmos. Meas. Tech., 6, 12271243, doi:10.5194/amt-6-1227-2013.

    • Search Google Scholar
    • Export Citation
  • He, Q. S., and Coauthors, 2013: The properties and formation of cirrus clouds over the Tibetan Plateau based on summertime lidar measurements. J. Atmos. Sci., 70, 901915, doi:10.1175/JAS-D-12-0171.1.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., 1977: Precipitation development in stratiform ice clouds: A microphysical and dynamical study. J. Atmos. Sci., 34, 367381, doi:10.1175/1520-0469(1977)034<0367:PDISIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and A. G. Palmer, 1986: Relationships for deriving thunderstorm anvil ice mass for CCOPE storm water budget estimates. J. Climate Appl. Meteor., 25, 691702, doi:10.1175/1520-0450(1986)025<0691:RFDTAI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., M. P. Mittermaier, and A. J. Illingworth, 2006: The retrieval of ice water content from radar reflectivity factor and temperature and its use in evaluating a mesoscale model. J. Appl. Meteor. Climatol., 45, 301317, doi:10.1175/JAM2340.1.

    • Search Google Scholar
    • Export Citation
  • Ivanova, D., D. L. Mitchell, W. P. Arnott, and M. Poellot, 2001: A GCM parameterization for bimodal size spectra and ice mass removal rates in mid-latitude cirrus clouds. Atmos. Res., 59–60, 89113, doi:10.1016/S0169-8095(01)00111-9.

    • Search Google Scholar
    • Export Citation
  • Jin, M., 2006: MODIS observed seasonal and interannual variations of atmospheric conditions associated with hydrological cycle over Tibetan Plateau. Geophys. Res. Lett., 33, L19707, doi:10.1029/2006GL026713.

    • Search Google Scholar
    • Export Citation
  • Jin, M., and T. J. Mullens, 2012: Land–biosphere–atmosphere interactions over the Tibetan Plateau from MODIS observations. Environ. Res. Lett., 7, 014003, doi:10.1088/1748-9326/7/1/014003.

    • Search Google Scholar
    • Export Citation
  • Kang, S., Y. Xu, Q. You, W.-A. Flügel, N. Pepin, and T. Yao, 2010: Review of climate and cryospheric change in the Tibetan Plateau. Environ. Res. Lett., 5, 015101, doi:10.1088/1748-9326/5/1/015101.

    • Search Google Scholar
    • Export Citation
  • Krishnamurti, T. N., and C. M. Kishtawal, 2000: A pronounced continental-scale diurnal mode of the Asian summer monsoon. Mon. Wea. Rev., 128, 462473, doi:10.1175/1520-0493(2000)128<0462:APCSDM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Li, Y., X. Liu, and B. Chen, 2006: Cloud type climatology over the Tibetan Plateau: A comparison of ISCCP and MODIS/Terra measurements with surface observations. Geophys. Res. Lett., 33, L17716, doi:10.1029/2006GL026890.

    • Search Google Scholar
    • Export Citation
  • Liao, L., and K. Sassen, 1994: Investigation of relationships between Ka-band radar reflectivity and ice and liquid water contents. Atmos. Res., 34, 231248, doi:10.1016/0169-8095(94)90094-9.

    • Search Google Scholar
    • Export Citation
  • Liou, K.-N., 1986: Influence of cirrus clouds on weather and climate processes: A global perspective. Mon. Wea. Rev., 114, 11671199, doi:10.1175/1520-0493(1986)114<1167:IOCCOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, C.-L., and A. J. Illingworth, 2000: Toward more accurate retrievals of ice water content from radar measurements of clouds. J. Appl. Meteor., 39, 11301146, doi:10.1175/1520-0450(2000)039<1130:TMAROI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, L.-P., and Coauthors, 1999: Summary and preliminary results of cloud and precipitation observation in Qinghai–Xizang Plateau in GAME-Tibet (in Chinese). Plateau Meteor., 18, 441450. [Available online at http://gyqx.westgis.ac.cn/CN/article/downloadArticleFile.do?attachType=PDF&id=5030.]

    • Search Google Scholar
    • Export Citation
  • Liu, R., Y. Liu, and B. Du, 2002: Cloud climatic characteristics of the Tibetan Plateau from ISCCP data (in Chinese). J. Nanjing Inst. Meteor., 25, 226234. [Available online at http://caod.oriprobe.com/articles/4482412/Cloud_Climatic_Characteristics_of_the_Tibetan_Plateau_from_ISCCP_Data.htm.]

    • Search Google Scholar
    • Export Citation
  • Liu, X., and B. Chen, 2000: Climatic warming in the Tibetan Plateau during recent decades. Int. J. Climatol., 20, 17291742, doi:10.1002/1097-0088(20001130)20:14<1729::AID-JOC556>3.0.CO;2-Y.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., T. P. Ackerman, P. Minnis, and D. F. Young, 1998: Cirrus layer microphysical properties derived from surface-based millimeter radar and infrared interferometer data. J. Geophys. Res., 103, 23 20723 216, doi:10.1029/98JD02117.

    • Search Google Scholar
    • Export Citation
  • Mace, G. G., A. J. Heymsfield, and M. R. Poellot, 2002: On retrieving the microphysical properties of cirrus clouds using the moments of the millimeter-wavelength Doppler spectrum. J. Geophys. Res., 107, 4815, doi:10.1029/2001JD001308.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 1999: Retrievals of vertical profiles of ice cloud microphysics from radar and IR measurements using tuned regressions between reflectivity and cloud parameters. J. Geophys. Res., 104, 16 74116 753, doi:10.1029/1999JD900244.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., A. V. Korolev, and A. J. Heymsfield, 2002: Profiling cloud ice mass and particle characteristic size from Doppler radar measurements. J. Atmos. Oceanic Technol., 19, 1003–1018, doi:10.1175/1520-0426(2002)019<1003:PCIMAP>2.0.CO;2.

  • Matrosov, S. Y., M. D. Shupe, A. J. Heymsfield, and P. Zuidema, 2003: Ice cloud optical thickness and extinction estimates from radar measurements. J. Appl. Meteor., 42, 1584–1597, doi:10.1175/1520-0450(2003)042<1584:ICOTAE>2.0.CO;2.

  • Molnar, P., W. R. Boos, and D. S. Battisti, 2010: Orographic controls on climate and paleoclimate of Asia: Thermal and mechanical roles for the Tibetan Plateau. Annu. Rev. Earth Planet. Sci., 38, 77–102, doi:10.1146/annurev-earth-040809-152456.

    • Search Google Scholar
    • Export Citation
  • Naud, C. M., and Y.-H. Chen, 2010: Assessment of ISCCP cloudiness over the Tibetan Plateau using CloudSatCALIPSO. J. Geophys. Res., 115, D10203, doi:10.1029/2009JD013053.

    • Search Google Scholar
    • Export Citation
  • Park, H.-S., J. C. H. Chiang, and S. Bordoni, 2012: The mechanical impact of the Tibetan Plateau on the seasonal evolution of the South Asian monsoon. J. Climate, 25, 23942407, doi:10.1175/JCLI-D-11-00281.1.

    • Search Google Scholar
    • Export Citation
  • Protat, A., J. Delanoë, D. Bouniol, A. J. Heymsfield, A. Bansemer, and P. Brown, 2007: Evaluation of ice water content retrievals from cloud radar reflectivity and temperature using a large airborne in situ microphysical database. J. Appl. Meteor. Climatol., 46, 557572, doi:10.1175/JAM2488.1.

    • Search Google Scholar
    • Export Citation
  • Ramanathan, V., R. D. Cess, E. F. Harrison, P. Minnis, B. R. Barkstrom, E. Ahmad, and D. Hartmann, 1989: Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment. Science, 243, 5763, doi:10.1126/science.243.4887.57.

    • Search Google Scholar
    • Export Citation
  • Rogers, R. R., and M. K. Yau, 1989: A Short Course in Cloud Physics. 3rd ed. Butterworth-Heinemann, 304 pp.

  • Sassen, K., 1984: Deep orographic cloud structure and composition derived from comprehensive remote sensing measurements. J. Climate Appl. Meteor., 23, 568583, doi:10.1175/1520-0450(1984)023<0568:DOCSAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., 1987: Ice cloud content from radar reflectivity. J. Climate Appl. Meteor., 26, 10501053, doi:10.1175/1520-0450(1987)026<1050:ICCFRR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., and Z. Wang, 2008: Classifying clouds around the globe with the CloudSat radar: 1-year of results. Geophys. Res. Lett., 35, L04805, doi:10.1029/2007GL032591.

  • Sato, T., H. Miura, and M. Satoh, 2007: Spring diurnal cycle of clouds over Tibetan Plateau: Global cloud-resolving simulations and satellite observations. Geophys. Res. Lett., 34, L18816, doi:10.1029/2007GL030782.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., T. Uttal, and S. Y. Matrosov, 2005: Arctic cloud microphysics retrievals from surface-based remote sensors at SHEBA. J. Appl. Meteor., 44, 15441562, doi:10.1175/JAM2297.1.

    • Search Google Scholar
    • Export Citation
  • Singh, P., and K. Nakamura, 2009: Diurnal variation in summer precipitation over the central Tibetan Plateau. J. Geophys. Res., 114, D20107, doi:10.1029/2009JD011788.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., S.-C. Tsay, P. W. Stackhouse, and P. J. Flatau, 1990: The relevance of the microphysical and radiative properties of cirrus clouds to climate and climatic feedback. J. Atmos. Sci., 47, 17421754, doi:10.1175/1520-0469(1990)047<1742:TROTMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tian, W., H. Tian, S. Dhomse, and W. Feng, 2011: A study of upper troposphere and lower stratosphere water vapor above the Tibetan Plateau using AIRS and MLS data. Atmos. Sci. Lett., 12, 233239, doi:10.1002/asl.319.

    • Search Google Scholar
    • Export Citation
  • Wang, B., Q. Bao, B. Hoskins, G. Wu, and Y. Liu, 2008: Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett., 35, L14702, doi:10.1029/2008GL034330.

    • Search Google Scholar
    • Export Citation
  • Wang, C., H. Shi, H. Hu, Y. Wang, and B. Xi, 2015: Properties of cloud and precipitation over the Tibetan Plateau. Adv. Atmos. Sci., 32, 15041516, doi:10.1007/s00376-015-4254-0.

    • Search Google Scholar
    • Export Citation
  • Wu, G.-X., and S.-J. Chen, 1985: The effect of mechanical forcing on the formation of a mesoscale vortex. Quart. J. Roy. Meteor. Soc., 111, 10491070, doi:10.1002/qj.49711147009.

    • Search Google Scholar
    • Export Citation
  • Wu, G.-X., and Coauthors, 2007: The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. J. Hydrometeor., 8, 770789, doi:10.1175/JHM609.1.

    • Search Google Scholar
    • Export Citation
  • Wu, G.-X., Y. Liu, B. Dong, X. Liang, A. Duan, Q. Bao, and J. Yu, 2012: Revisiting Asian monsoon formation and change associated with Tibetan Plateau forcing: I. Formation. Climate Dyn., 39, 11691181, doi:10.1007/s00382-012-1334-z.

    • Search Google Scholar
    • Export Citation
  • Xu, J., B. Zhang, M. Wang, and H. Wang, 2012: Diurnal variation of summer precipitation over the Tibetan Plateau: A cloud-resolving simulation. Ann. Geophys., 30, 15751586, doi:10.5194/angeo-30-1575-2012.

    • Search Google Scholar
    • Export Citation
  • Yanai, M., C. Li, and Z. Song, 1992: Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon. J. Meteor. Soc. Japan, 70, 319351. [Available online at https://www.jstage.jst.go.jp/article/jmsj1965/70/1B/70_1B_319/_pdf.]

    • Search Google Scholar
    • Export Citation
  • Yang, P., and Coauthors, 2002: Inherent and apparent scattering properties of coated or uncoated spheres embedded in an absorbing host medium. Appl. Opt., 41, 27402759, doi:10.1364/AO.41.002740.

    • Search Google Scholar
    • Export Citation
  • Yao, T., and Coauthors, 2012: Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Climate Change, 2, 663667, doi:10.1038/nclimate1580.

    • Search Google Scholar
    • Export Citation
  • Ye, D., 1981: Some characteristics of the summer circulation over the Qinghai–Xizang (Tibet) Plateau and its neighborhood. Bull. Amer. Meteor. Soc., 62, 1419, doi:10.1175/1520-0477(1981)062<0014:SCOTSC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ye, D., and G.-X. Wu, 1998: The role of the heat source of the Tibetan Plateau in the general circulation. Meteor. Atmos. Phys., 67, 181198, doi:10.1007/BF01277509.

    • Search Google Scholar
    • Export Citation
  • Zhang, D., D. Liu, T. Luo, Z. Wang, and Y. Yin, 2015: Aerosol impacts on cloud thermodynamic phase change over East Asia observed with CALIPSO and CloudSat measurements. J. Geophys. Res. Atmos., 120, 14901501, doi:10.1002/2014JD022630.

  • Zhang, Y., T. Li, and B. Wang, 2004: Decadal change of the spring snow depth over the Tibetan Plateau: The associated circulation and influence on the East Asian summer monsoon. J. Climate, 17, 27802793, doi:10.1175/1520-0442(2004)017<2780:DCOTSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhao, C., and Coauthors, 2011: ARM Cloud Retrieval Ensemble Data Set (ACRED). DOE Tech. Rep. DOE/SC-ARM-TR-099, 28 pp. [Available online at https://www.arm.gov/publications/tech_reports/doe-sc-arm-tr-099.pdf.]

  • Zhao, C., and Coauthors, 2012: Toward understanding of differences in current cloud retrievals of ARM ground-based measurements. J. Geophys. Res., 117, D10206, doi:10.1029/2011JD016792.

    • Search Google Scholar
    • Export Citation
  • Zhao, C., Y. Wang, Q. Wang, Z. Li, Z. Wang, and D. Liu, 2014a: A new cloud and aerosol layer detection method based on micropulse lidar measurements. J. Geophys. Res., 119, 67886802, doi:10.1002/2014JD021760.

    • Search Google Scholar
    • Export Citation
  • Zhao, C., S. Xie, X. Chen, M. P. Jensen, and M. Dunn, 2014b: Quantifying uncertainties of cloud microphysical property retrievals with a perturbation method. J. Geophys. Res., 119, 53755385, doi:10.1002/2013JD021112.

    • Search Google Scholar
    • Export Citation
  • Zuidema, P., and B. Mapes, 2008: Cloud vertical structure observed from space and ship over the Bay of Bengal and the eastern tropical Pacific. J. Meteor. Soc. Japan, 86A, 205218, doi:10.2151/jmsj.86A.205.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 557 193 19
PDF Downloads 291 67 4