Extreme Event Verification for Probabilistic Downscaling

Megan C. Kirchmeier-Young Department of Atmospheric and Oceanic Sciences, and Nelson Institute Center for Climatic Research, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Megan C. Kirchmeier-Young in
Current site
Google Scholar
PubMed
Close
,
David J. Lorenz Nelson Institute Center for Climatic Research, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by David J. Lorenz in
Current site
Google Scholar
PubMed
Close
, and
Daniel J. Vimont Department of Atmospheric and Oceanic Sciences, and Nelson Institute Center for Climatic Research, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Daniel J. Vimont in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Extreme events are important to many studying regional climate impacts but provide a challenge for many “deterministic” downscaling methodologies. The University of Wisconsin Probabilistic Downscaling (UWPD) dataset applies a “probabilistic” approach to downscaling that may be advantageous in a number of situations, including realistic representation of extreme events. The probabilistic approach to downscaling, however, presents some unique challenges for verification, especially when comparing a full probability density function with a single observed value for each day. Furthermore, because of the wide range of specific climatic information needed in climate impacts assessment, any single verification metric will be useful to only a limited set of practitioners. The intent of this study, then, is (i) to identify verification metrics appropriate for probabilistic downscaling of climate data; (ii) to apply, within the UWPD, those metrics to a suite of extreme event statistics that may be of use in climate impacts assessments; and (iii) in applying these metrics, to demonstrate the utility of a probabilistic approach to downscaling climate data, especially for representing extreme events.

Corresponding author address: Megan Kirchmeier-Young, University of Wisconsin–Madison, 1225 W. Dayton St., Madison, WI 53706. E-mail: kirchmeier@wisc.edu

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-16-0043.s1.

Abstract

Extreme events are important to many studying regional climate impacts but provide a challenge for many “deterministic” downscaling methodologies. The University of Wisconsin Probabilistic Downscaling (UWPD) dataset applies a “probabilistic” approach to downscaling that may be advantageous in a number of situations, including realistic representation of extreme events. The probabilistic approach to downscaling, however, presents some unique challenges for verification, especially when comparing a full probability density function with a single observed value for each day. Furthermore, because of the wide range of specific climatic information needed in climate impacts assessment, any single verification metric will be useful to only a limited set of practitioners. The intent of this study, then, is (i) to identify verification metrics appropriate for probabilistic downscaling of climate data; (ii) to apply, within the UWPD, those metrics to a suite of extreme event statistics that may be of use in climate impacts assessments; and (iii) in applying these metrics, to demonstrate the utility of a probabilistic approach to downscaling climate data, especially for representing extreme events.

Corresponding author address: Megan Kirchmeier-Young, University of Wisconsin–Madison, 1225 W. Dayton St., Madison, WI 53706. E-mail: kirchmeier@wisc.edu

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-16-0043.s1.

Supplementary Materials

    • Supplemental Materials (PDF 150.99 KB)
Save
  • Abaurrea, J., and J. Asín, 2005: Forecasting local daily precipitation patterns in a climate change scenario. Climate Res., 28, 183197, doi:10.3354/cr028183.

    • Search Google Scholar
    • Export Citation
  • Barsugli, J. J., and Coauthors, 2013: The practitioner’s dilemma: How to assess the credibility of downscaled climate projections. Eos, Trans. Amer. Geophys. Union, 94, 424425, doi:10.1002/2013EO460005.

    • Search Google Scholar
    • Export Citation
  • Beuchat, X., B. Schaefli, M. Soutter, and A. Mermoud, 2012: A robust framework for probabilistic precipitations downscaling from an ensemble of climate predictions applied to Switzerland. J. Geophys. Res., 117, D03115, doi:10.1029/2011JD016449.

    • Search Google Scholar
    • Export Citation
  • Brier, G. W., 1950: Verification of forecasts expressed in terms of probability. Mon. Wea. Rev., 78, 13, doi:10.1175/1520-0493(1950)078<0001:VOFEIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brodtkorb, P. A., P. Johannesson, G. Lindgren, I. Rychlik, J. Rydén, and E. Sjö, 2000: WAFO—A Matlab toolbox for analysis of random waves and loads. Proc. 10th Int. Offshore and Polar Eng. Conf., Seattle, WA, International Society of Offshore and Polar Engineers, 343–350.

  • Broecker, J., 2012: Probability forecasts. Forecast Verification: A Practitioner’s Guide in Atmospheric Science, 2nd ed. I. T. Jolliffe, and D. B. Stephenson, Eds., Wiley-Blackwell, 119–139.

  • Brown, J. D., J. Demargne, D.-J. Seo, and Y. Liu, 2010: The Ensemble Verification System (EVS): A software tool for verifying ensemble forecasts of hydrometeorological and hydrologic variables at discrete locations. Environ. Modell. Software, 25, 854872, doi:10.1016/j.envsoft.2010.01.009.

    • Search Google Scholar
    • Export Citation
  • Bürger, G., T. Q. Murdock, A. T. Werner, S. R. Sobie, and A. J. Cannon, 2012: Downscaling extremes—An intercomparison of multiple statistical methods for present climate. J. Climate, 25, 43664388, doi:10.1175/JCLI-D-11-00408.1.

    • Search Google Scholar
    • Export Citation
  • Chen, J., and F. P. Brissette, 2014: Stochastic generation of daily precipitation amounts: Review and evaluation of different models. Climate Res., 59, 189206, doi:10.3354/cr01214.

    • Search Google Scholar
    • Export Citation
  • Curriero, F. C., J. A. Patz, J. B. Rose, and S. Lele, 2001: The association between extreme precipitation and waterborne disease outbreaks in the United States, 1948 1994. Amer. J. Public Health, 91, 11941199, doi:10.2105/AJPH.91.8.1194.

    • Search Google Scholar
    • Export Citation
  • Delworth, T. L., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics. J. Climate, 19, 643674, doi:10.1175/JCLI3629.1.

    • Search Google Scholar
    • Export Citation
  • Fealy, R., and J. Sweeney, 2007: Statistical downscaling of precipitation for a selection of sites in Ireland employing a generalised linear modelling approach. Int. J. Climatol., 27, 20832094, doi:10.1002/joc.1506.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., 2006: Regional climate modeling: Status and perspectives. J. Phys. IV France, 139, 101118, doi:10.1051/jp4:2006139008.

  • Gnanadesikan, A., and Coauthors, 2006: GFDL’s CM2 global coupled climate models. Part II: The baseline ocean simulation. J. Climate, 19, 675697, doi:10.1175/JCLI3630.1.

    • Search Google Scholar
    • Export Citation
  • Gneiting, T., and M. Katzfuss, 2014: Probabilistic forecasting. Annu. Rev. Stat. Appl., 1, 125151, doi:10.1146/annurev-statistics-062713-085831.

    • Search Google Scholar
    • Export Citation
  • Goodess, C. M., and Coauthors, 2012: An intercomparison of statistical downscaling methods for Europe and European regions—Assessing their performance with respect to extreme temperature and precipitation events. CRU Rep. CRU RP11, 68 pp.

  • Gutmann, E., T. Pruitt, M. P. Clark, L. Brekke, J. R. Arnold, D. A. Raff, and R. M. Rasmussen, 2014: An intercomparison of statistical downscaling methods used for water resource assessments in the United States. Water Resour. Res., 50, 71677186, doi:10.1002/2014WR015559.

    • Search Google Scholar
    • Export Citation
  • Hamill, T. M., 2001: Interpretation of rank histograms for verifying ensemble forecasts. Mon. Wea. Rev., 129, 550560, doi:10.1175/1520-0493(2001)129<0550:IORHFV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Harris, C. N. P., A. D. Quinn, and J. Bridgeman, 2014: The use of probabilistic weather generator information for climate change adaptation in the UK water sector. Meteor. Appl., 21, 129140, doi:10.1002/met.1335.

    • Search Google Scholar
    • Export Citation
  • Hayhoe, K., 2010: A standardized framework for evaluating the skill of statistical downscaling methods. 2010 Fall Meeting, San Francisco, CA, Amer. Geophys. Union, Abstract GC51A-0739.

  • Haylock, M. R., G. C. Cawley, C. Harpham, R. L. Wilby, and C. M. Goodess, 2006: Downscaling heavy precipitation over the United Kingdom: A comparison of dynamical and statistical methods and their future scenarios. Int. J. Climatol., 26, 13971415, doi:10.1002/joc.1318.

    • Search Google Scholar
    • Export Citation
  • Hosking, J. R. M., J. R. Wallis, and E. F. Wood, 1985: Estimation of the generalized extreme-value distribution by the method of probability-weighted moments. Technometrics, 27, 251261, doi:10.1080/00401706.1985.10488049.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kirchmeier, M. C., D. J. Lorenz, and D. J. Vimont, 2014: Statistical downscaling of daily wind speed variations. J. Appl. Meteor. Climatol., 53, 660675, doi:10.1175/JAMC-D-13-0230.1.

    • Search Google Scholar
    • Export Citation
  • Kirchmeier-Young, M. C., 2015: A probabilistic perspective for statistical downscaling of climate variables: Model development, application, and evaluation. Ph.D. dissertation, University of Wisconsin–Madison, 201 pp.

  • Langousis, A., and V. Kaleris, 2014: Statistical framework to simulate daily rainfall series conditional on upper-air predictor variables. Water Resour. Res., 50, 39073932, doi:10.1002/2013WR014936.

    • Search Google Scholar
    • Export Citation
  • Lorenz, D. J., 2015: Downscaled climate projections. [Available online at http://djlorenz.github.io/downscaling2/main.html.]

  • Machete, R. L., 2013: Contrasting probabilistic scoring rules. J. Stat. Plann. Inference, 143, 17811790, doi:10.1016/j.jspi.2013.05.012.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., H. W. Rust, and T. J. Osborn, 2010a: Synoptic airflow and UK daily precipitation extremes. Extremes, 13, 133153, doi:10.1007/s10687-010-0102-x.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., and Coauthors, 2010b: Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys., 48, RG3003, doi:10.1029/2009RG000314.

    • Search Google Scholar
    • Export Citation
  • Maraun, D., and Coauthors, 2015: VALUE: A framework to validate downscaling approaches for climate change studies. Earth’s Future, 3, 114, doi:10.1002/2014EF000259.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., and H. G. Hidalgo, 2008: Utility of daily vs. monthly large-scale climate data: An intercomparison of two statistical downscaling methods. Hydrol. Earth Syst. Sci., 12, 551563, doi:10.5194/hess-12-551-2008.

    • Search Google Scholar
    • Export Citation
  • Maurer, E. P., H. G. Hidalgo, T. Das, M. D. Dettinger, and D. R. Cayan, 2010: The utility of daily large-scale climate data in the assessment of climate change impacts on daily streamflow in California. Hydrol. Earth Syst. Sci., 14, 11251138, doi:10.5194/hess-14-1125-2010.

    • Search Google Scholar
    • Export Citation
  • Melillo, J., T. C. Richmond, and G. Yohe, Eds., 2014: Climate change impacts in the United States: The third national climate assessment. U.S. Global Change Research Program, 841 pp., doi:10.7930/J0Z31WJ2.

  • Min, Y.-M., V. N. Kryjov, K.-H. An, S. N. Hameed, S.-J. Sohn, W.-J. Lee, and J.-H. Oh, 2011: Evaluation of the weather generator CLIGEN with daily precipitation characteristics in Korea. Asia-Pac. J. Atmos. Sci., 47, 255263, doi:10.1007/s13143-011-0014-y.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., D. J. Lorenz, D. Vimont, S. Vavrus, C. Kucharik, and K. Franz, 2011: 21st century Wisconsin snow projections based on an operational snow model driven by statistically downscaled climate data. Int. J. Climatol., 31, 16151633, doi:10.1002/joc.2179.

    • Search Google Scholar
    • Export Citation
  • Notaro, M., D. J. Lorenz, C. Hoving, and M. Schummer, 2014: Twenty-first-century projections of snowfall and winter severity across central-eastern North America. J. Climate, 27, 65266550, doi:10.1175/JCLI-D-13-00520.1.

    • Search Google Scholar
    • Export Citation
  • Parmesan, C., T. L. Root, and M. R. Willig, 2000: Impacts of extreme weather and climate on terrestrial biota. Bull. Amer. Meteor. Soc., 81, 443450, doi:10.1175/1520-0477(2000)081<0443:IOEWAC>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Patz, J. A., D. Campbell-Lendrum, T. Holloway, and J. A. Foley, 2005: Impact of regional climate change on human health. Nature, 438, 310317, doi:10.1038/nature04188.

    • Search Google Scholar
    • Export Citation
  • Patz, J. A., H. Frumkin, T. Holloway, D. J. Vimont, and A. Haines, 2014: Climate change: Challenges and opportunities for global health. JAMA, J. Amer. Med. Assoc., 312, 15651580, doi:10.1001/jama.2014.13186.

    • Search Google Scholar
    • Export Citation
  • Pinson, P., P. McSharry, and H. Madsen, 2010: Reliability diagrams for non-parametric density forecasts of continuous variables: Accounting for serial correlation. Quart. J. Roy. Meteor. Soc., 136, 7790, doi:10.1002/qj.559.

    • Search Google Scholar
    • Export Citation
  • Robinson, D. A., 1990: The United States cooperative climate-observing systems: Reflections and recommendations. Bull. Amer. Meteor. Soc., 71, 826831, doi:10.1175/1520-0477(1990)071<0826:TUSCCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rosenzweig, C., A. Iglesias, X. B. Yang, P. R. Epstein, and E. Chivian, 2001: Climate change and extreme weather events: Implications for food production, plant diseases, and pests. Global Change Hum. Health, 2, 90104, doi:10.1023/A:1015086831467.

    • Search Google Scholar
    • Export Citation
  • Schuster, Z. T., K. W. Potter, and D. S. Liebl, 2012: Assessing the effects of climate change on precipitation and flood damage in Wisconsin. J. Hydrol. Eng., 17, 888894, doi:10.1061/(ASCE)HE.1943-5584.0000513.

    • Search Google Scholar
    • Export Citation
  • Sharma, S., M. J. Vander Zanden, J. J. Magnuson, and J. Lyons, 2011: Comparing climate change and species invasions as drivers of coldwater fish population extirpations. PloS One, 6, e22906, doi:10.1371/journal.pone.0022906.

    • Search Google Scholar
    • Export Citation
  • Sillmann, J., V. V. Kharin, X. Zhang, F. W. Zwiers, and D. Bronaugh, 2013: Climate extremes indices in the CMIP5 multimodel ensemble: Part 1. Model evaluation in the present climate. J. Geophys. Res., 118, 17161733, doi:10.1002/jgrd.50203.

    • Search Google Scholar
    • Export Citation
  • Smith, T. T., B. F. Zaitchik, and J. M. Gohlke, 2013: Heat waves in the United States: Definitions, patterns and trends. Climatic Change, 118, 811825, doi:10.1007/s10584-012-0659-2.

    • Search Google Scholar
    • Export Citation
  • Stacy, E. W., 1962: A generalization of the gamma distribution. Ann. Math. Stat., 33, 11871192, doi:10.1214/aoms/1177704481.

  • Sunyer, M. A., H. Madsen, and P. H. Ang, 2012: A comparison of different regional climate models and statistical downscaling methods for extreme rainfall estimation under climate change. Atmos. Res., 103, 119128, doi:10.1016/j.atmosres.2011.06.011.

    • Search Google Scholar
    • Export Citation
  • Tryhorn, L., and A. DeGaetano, 2011: A comparison of techniques for downscaling extreme precipitation over the northeastern United States. Int. J. Climatol., 31, 19751989, doi:10.1002/joc.2208.

    • Search Google Scholar
    • Export Citation
  • Vavrus, S. J., and R. J. Behnke, 2014: A comparison of projected future precipitation in Wisconsin using global and downscaled climate model simulations: Implications for public health. Int. J. Climatol., 34, 31063124, doi:10.1002/joc.3897.

    • Search Google Scholar
    • Export Citation
  • Vavrus, S. J., M. Notaro, and D. J. Lorenz, 2015: Interpreting climate model projections of extreme weather events. Wea. Climate Extremes, 10B, 1029, doi:10.1016/j.wace.2015.10.005.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

  • WICCI, 2011: Wisconsin’s changing climate: Impacts and adaptation. Nelson Institute for Environmental Studies, University of Wisconsin–Madison and the Wisconsin Department of Natural Resources, 217 pp.

  • Wong, G., D. Maraun, M. Vrac, M. Widmann, J. M. Eden, and T. Kent, 2014: Stochastic model output statistics for bias correcting and downscaling precipitation including extremes. J. Climate, 27, 69406959, doi:10.1175/JCLI-D-13-00604.1.

    • Search Google Scholar
    • Export Citation
  • Yee, T. W., and A. G. Stephenson, 2007: Vector generalized linear and additive extreme value models. Extremes, 10, 119, doi:10.1007/s10687-007-0032-4.

    • Search Google Scholar
    • Export Citation
  • Zhang, X., L. Alexander, G. C. Hegerl, P. Jones, A. K. Tank, T. C. Peterson, B. Trewin, and F. W. Zwiers, 2011: Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip. Rev.: Climate Change, 2, 851870, doi:10.1002/wcc.147.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 459 131 10
PDF Downloads 375 113 10