Objective Climatological Analysis of Extreme Weather Events in Arizona during the North American Monsoon

Jeremy J. Mazon Department of Applied Aviation Sciences, Embry–Riddle Aeronautical University, Prescott, Arizona
Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Jeremy J. Mazon in
Current site
Google Scholar
PubMed
Close
,
Christopher L. Castro Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Christopher L. Castro in
Current site
Google Scholar
PubMed
Close
,
David K. Adams Centro de la Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Mexico City, Mexico

Search for other papers by David K. Adams in
Current site
Google Scholar
PubMed
Close
,
Hsin-I Chang Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona

Search for other papers by Hsin-I Chang in
Current site
Google Scholar
PubMed
Close
,
Carlos M. Carrillo Biological Systems Engineering Department, University of Nebraska–Lincoln, Lincoln, Nebraska

Search for other papers by Carlos M. Carrillo in
Current site
Google Scholar
PubMed
Close
, and
John J. Brost Southern Region Headquarters, National Weather Service, Fort Worth, Texas

Search for other papers by John J. Brost in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Almost one-half of the annual precipitation in the southwestern United States occurs during the North American monsoon (NAM). Given favorable synoptic-scale conditions, organized monsoon thunderstorms may affect relatively large geographic areas. Through an objective analysis of atmospheric reanalysis and observational data, the dominant synoptic patterns associated with NAM extreme events are determined for the period from 1993 to 2010. Thermodynamically favorable extreme-weather-event days are selected on the basis of atmospheric instability and precipitable water vapor from Tucson, Arizona, rawinsonde data. The atmospheric circulation patterns at 500 hPa associated with the extreme events are objectively characterized using principal component analysis. The first two dominant modes of 500-hPa geopotential-height anomalies of the severe-weather-event days correspond to type-I and type-II severe-weather-event patterns previously subjectively identified by Maddox et al. These patterns reflect a positioning of the monsoon ridge to the north and east or north and west, respectively, from its position in the “Four Corners” region during the period of the climatological maximum of monsoon precipitation from mid-July to mid-August. An hourly radar–gauge precipitation product shows evidence of organized, westward-propagating convection in Arizona during the type-I and type-II severe weather events. This new methodological approach for objectively identifying severe weather events may be easily adapted to inform operational forecasting or analysis of gridded climate data.

Corresponding author address: Mr. Jeremy Mazon, Dept. of Applied Aviation Sciences, Embry–Riddle Aeronautical University, 3700 Willow Creek Rd., Prescott, AZ 86301-3720. E-mail: jeremy.mazon@erau.edu

Abstract

Almost one-half of the annual precipitation in the southwestern United States occurs during the North American monsoon (NAM). Given favorable synoptic-scale conditions, organized monsoon thunderstorms may affect relatively large geographic areas. Through an objective analysis of atmospheric reanalysis and observational data, the dominant synoptic patterns associated with NAM extreme events are determined for the period from 1993 to 2010. Thermodynamically favorable extreme-weather-event days are selected on the basis of atmospheric instability and precipitable water vapor from Tucson, Arizona, rawinsonde data. The atmospheric circulation patterns at 500 hPa associated with the extreme events are objectively characterized using principal component analysis. The first two dominant modes of 500-hPa geopotential-height anomalies of the severe-weather-event days correspond to type-I and type-II severe-weather-event patterns previously subjectively identified by Maddox et al. These patterns reflect a positioning of the monsoon ridge to the north and east or north and west, respectively, from its position in the “Four Corners” region during the period of the climatological maximum of monsoon precipitation from mid-July to mid-August. An hourly radar–gauge precipitation product shows evidence of organized, westward-propagating convection in Arizona during the type-I and type-II severe weather events. This new methodological approach for objectively identifying severe weather events may be easily adapted to inform operational forecasting or analysis of gridded climate data.

Corresponding author address: Mr. Jeremy Mazon, Dept. of Applied Aviation Sciences, Embry–Riddle Aeronautical University, 3700 Willow Creek Rd., Prescott, AZ 86301-3720. E-mail: jeremy.mazon@erau.edu
Save
  • Adams, D. K., and A. C. Comrie, 1997: The North American monsoon. Bull. Amer. Meteor. Soc., 78, 21972213, doi:10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Adams, D. K., and E. P. Souza, 2009: CAPE and convective events in the Southwest during the North American monsoon. Mon. Wea. Rev., 137, 8398, doi:10.1175/2008MWR2502.1.

    • Search Google Scholar
    • Export Citation
  • Adams, D. K., S. I. Gutman, K. L. Holub, and D. S. Pereira, 2013: GNSS observations of deep convective time scales in the Amazon. Geophys. Res. Lett., 40, 28182823, doi:10.1002/grl.50573.

    • Search Google Scholar
    • Export Citation
  • Bieda, S. W., III, C. L. Castro, S. L. Mullen, A. C. Comrie, and E. Pytlak, 2009: The relationship of transient upper-level troughs to variability of the North American monsoon system. J. Climate, 22, 42134227, doi:10.1175/2009JCLI2487.1.

    • Search Google Scholar
    • Export Citation
  • Blanchard, D. O., 2011: Supercells in environments with atypical hodographs. Wea. Forecasting, 26, 10751083, doi:10.1175/WAF-D-11-00012.1.

    • Search Google Scholar
    • Export Citation
  • Bordoni, S., and B. Stevens, 2006: Principal component analysis of the summertime winds over the Gulf of California: A gulf surge index. Mon. Wea. Rev., 134, 33953414, doi:10.1175/MWR3253.1.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., C. Smith, and J. M. Wallace, 1992: An intercomparison of methods for finding coupled patterns in climate data. J. Climate, 5, 541560, doi:10.1175/1520-0442(1992)005<0541:AIOMFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relationships between water vapor path and precipitation over the tropical oceans. J. Climate, 17, 15171528, doi:10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bright, D. R., and S. L. Mullen, 2002: The sensitivity of the numerical simulation of the Southwest monsoon boundary layer to the choice of PBL turbulence parameterization in MM5. Wea. Forecasting, 17, 99114, doi:10.1175/1520-0434(2002)017<0099:TSOTNS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Carleton, A. M., 1986: Synoptic-dynamic character of ‘bursts’ and ‘breaks’ in the south-west U.S. summer precipitation singularity. J. Climatol., 6, 605623, doi:10.1002/joc.3370060604.

    • Search Google Scholar
    • Export Citation
  • Castro, C. L., R. A. Pielke Sr., and J. O. Adegoke, 2007a: Investigation of the summer climate of the contiguous United States and Mexico using the Regional Atmospheric Modeling System (RAMS). Part I: Model climatology (1950–2002). J. Climate, 20, 38443865, doi:10.1175/JCLI4211.1.

    • Search Google Scholar
    • Export Citation
  • Castro, C. L., R. A. Pielke Sr., J. O. Adegoke, S. D. Schubert, and P. J. Pegion, 2007b: Investigation of the summer climate of the contiguous United States and Mexico using the Regional Atmospheric Modeling System (RAMS). Part II: Model climate variability. J. Climate, 20, 38663887, doi:10.1175/JCLI4212.1.

    • Search Google Scholar
    • Export Citation
  • Castro, C. L., H.-I. Chang, F. Dominguez, C. Carrillo, J.-K. Schemm, and H.-M. H. Juang, 2012: Can a regional climate model improve the ability to forecast the North American monsoon? J. Climate, 25, 82128237, doi:10.1175/JCLI-D-11-00441.1.

    • Search Google Scholar
    • Export Citation
  • Ciancarelli, B., C. L. Castro, C. Woodhouse. F. Dominguez, H.-I. Chang, C. Carrillo, and D. Griffin, 2014: Dominant patterns of US warm season precipitation variability in a fine resolution observational record, with focus on the Southwest. Int. J. Climatol., 34, 687707, doi:10.1002/joc.3716.

    • Search Google Scholar
    • Export Citation
  • Corfidi, S. F., 2003: Cold pools and MCS propagation: Forecasting the motion of downwind-developing MCSs. Wea. Forecasting, 18, 9971017, doi:10.1175/1520-0434(2003)018<0997:CPAMPF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ding, Q., B. Wang, J. M. Wallace, and G. Branstator, 2011: Tropical–extratropical teleconnections in boreal summer: Observed interannual variability. J. Climate, 24, 18781896, doi:10.1175/2011JCLI3621.1.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., and E. N. Rasmussen, 1994: The effect of neglecting the virtual temperature correction on CAPE calculations. Wea. Forecasting, 9, 625629, doi:10.1175/1520-0434(1994)009<0625:TEONTV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Douglas, A. V., and P. J. Englehart, 2007: A climatological perspective of transient synoptic features during NAME 2004. J. Climate, 20, 19471954, doi:10.1175/JCLI4095.1.

    • Search Google Scholar
    • Export Citation
  • Douglas, M. W., R. A. Maddox, K. Howard, and S. Reyes, 1993: The Mexican monsoon. J. Climate, 6, 16651677, doi:10.1175/1520-0442(1993)006<1665:TMM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 592 pp.

  • Finch, Z. O., and R. H. Johnson, 2010: Observational analysis of an upper-level inverted trough during the 2004 North American Monsoon Experiment. Mon. Wea. Rev., 138, 35403555, doi:10.1175/2010MWR3369.1.

    • Search Google Scholar
    • Export Citation
  • Griffiths, P. G., C. S. Magirl, R. H. Webb, E. Pytlak, P. A. Troch, and S. W. Lyon, 2009: Spatial distribution and frequency of precipitation during an extreme event: July 2006 mesoscale convective complexes and floods in southeastern Arizona. Water Resour. Res., 45, W07419, doi:10.1029/2008WR007380.

    • Search Google Scholar
    • Export Citation
  • Hales, J. E., Jr., 1977: On the relationship of convective cooling to nocturnal thunderstorms at Phoenix. Mon. Wea. Rev., 105, 16091613, doi:10.1175/1520-0493(1977)105<1609:OTROCC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hu, H., and F. Dominguez, 2015: Evaluation of oceanic and terrestrial sources of moisture for the North American monsoon using numerical models and precipitation stable isotopes. J. Hydrometeor., 16, 1935, doi:10.1175/JHM-D-14-0073.1.

    • Search Google Scholar
    • Export Citation
  • Janiga, M. A., and C. D. Thorncroft, 2014: Convection over tropical Africa and the east Atlantic during the West African monsoon: Regional and diurnal variability. J. Climate, 27, 41594188, doi:10.1175/JCLI-D-13-00449.1.

    • Search Google Scholar
    • Export Citation
  • Jares, M., C. L. Castro, H. I. Chang, C. Carrillo, J. J. Mazon, J. Stutler, and J. J. Brost, 2014: High resolution WRF simulation and climatological analysis of severe weather events during the North American monsoon. 26th Conf. on Weather Analysis and Forecasting/22nd Conf. on Numerical Weather Prediction, Atlanta, GA, Amer. Meteor. Soc., 151. [Available online at https://ams.confex.com/ams/94Annual/webprogram/Paper237080.html.]

  • Klemp, J. B., 2006: Advances in the WRF Model for convection-resolving forecasting. Adv. Geosci., 7, 2529, doi:10.5194/adgeo-7-25-2006.

    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., and Coauthors, 2008a: Water vapor and surface observations in northwestern Mexico during the 2004 NAME enhanced observing period. Geophys. Res. Lett., 35, L03815, doi:10.1029/2007GL031404.

    • Search Google Scholar
    • Export Citation
  • Kursinski, E. R., D. K. Adams, and M. Leuthold, 2008b: GPS observations of precipitable water and implications for the predictability of precipitation during the North American monsoon. CLIVAR Exchanges, No. 42, International CLIVAR Project Office, Southampton, United Kingdom, 14–21. [Available online at http://www.clivar.org/sites/default/files/documents/Exchanges45.pdf.]

  • Kutzbach, J. E., 1967: Empirical eigenvectors of sea-level pressure, surface temperature, and precipitation complexes over North America. J. Appl. Meteor., 6, 791802, doi:10.1175/1520-0450(1967)006<0791:EEOSLP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lahmers, T. M., C. L. Castro, D. K. Adams, Y. L. Serra, J. J. Brost, and T. Luong, 2016: Long-term changes in the climatology of transient inverted troughs over the North American monsoon region and their effects on precipitation. J. Climate, 29, 60376064, doi:10.1175/JCLI-D-15-0726.1.

    • Search Google Scholar
    • Export Citation
  • Li, J., S. Sorooshian, W. Higgins, X. Gao, B. Imam, and K. Hsu, 2008: Influence of spatial resolution on diurnal variability during the North American monsoon. J. Climate, 21, 39673988, doi:10.1175/2008JCLI2022.1.

    • Search Google Scholar
    • Export Citation
  • Lu, E., X. Zeng, Z. Jiang, Y. Wang, and Q. Zhang, 2009: Precipitation and precipitable water: Their temporal-spatial behaviors and use in determining monsoon onset/retreat and monsoon regions. J. Geophys. Res., 114, D23105, doi:10.1029/2009JD012146.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., D. M. McCollum, and K. W. Howard, 1995: Large-scale patterns associated with severe summertime thunderstorms over central Arizona. Wea. Forecasting, 10, 763778, doi:10.1175/1520-0434(1995)010<0763:LSPAWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Magirl, C. S., and Coauthors, 2007: Impact of recent extreme Arizona storms. Eos, Trans. Amer. Geophys. Union, 88, 191193, doi:10.1029/2007EO170003.

    • Search Google Scholar
    • Export Citation
  • McCollum, D. M., R. A. Maddox, and K. W. Howard, 1995: Case study of a severe mesoscale convective system in central Arizona. Wea. Forecasting, 10, 643665, doi:10.1175/1520-0434(1995)010<0643:CSOASM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mejía, J. F., M. W. Douglas, and P. J. Lamb, 2016: Observational investigation of relationships between moisture surges and mesoscale- to large-scale convection during the North American monsoon. Int. J. Climatol., 36, 25552569, doi:10.1002/joc.4512.

    • Search Google Scholar
    • Export Citation
  • Mesinger, F., and Coauthors, 2006: North American Regional Reanalysis. Bull. Amer. Meteor. Soc., 87, 343360, doi:10.1175/BAMS-87-3-343.

    • Search Google Scholar
    • Export Citation
  • Minjarez-Sosa, C. M., C. L. Castro, K. L. Cummins, E. P. Krider, and J. Waissmann, 2012: Toward development of improved QPE in complex terrain using cloud-to-ground lightning data: A case study for the 2005 monsoon in southern Arizona. J. Hydrometeor., 13, 18551873, doi:10.1175/JHM-D-11-0129.1.

    • Search Google Scholar
    • Export Citation
  • Moncrieff, M. W., and M. J. Miller, 1976: The dynamics and simulation of tropical cumulonimbus and squall lines. Quart. J. Roy. Meteor. Soc., 102, 373394, doi:10.1002/qj.49710243208.

    • Search Google Scholar
    • Export Citation
  • Neelin, J. D., O. Peters, and K. Hales, 2009: The transition to strong convection. J. Atmos. Sci., 66, 23672384, doi:10.1175/2009JAS2962.1.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., D. J. Gochis, and T. J. Lang, 2008: The diurnal cycle of clouds and precipitation along the Sierra Madre Occidental observed during NAME-2004: Implications for warm season precipitation estimation in complex terrain. J. Hydrometeor., 9, 728743, doi:10.1175/2008JHM939.1.

    • Search Google Scholar
    • Export Citation
  • Newman, A., and R. H. Johnson, 2012: Mechanisms for precipitation enhancement in a North American monsoon upper-tropospheric trough. J. Atmos. Sci., 69, 17751792, doi:10.1175/JAS-D-11-0223.1.

    • Search Google Scholar
    • Export Citation
  • North, G. R., T. L. Bell, R. F. Cahalan, and F. J. Moeng, 1982: Sampling errors in the estimation of empirical orthogonal functions. Mon. Wea. Rev., 110, 699706, doi:10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Prohaska, J. T., 1976: A technique for analyzing the linear relationships between two meteorological fields. Mon. Wea. Rev., 104, 13451353, doi:10.1175/1520-0493(1976)104<1345:ATFATL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pytlak, E., M. Goering, and A. Bennett, 2005: Upper-tropospheric troughs and their interaction with the North American monsoon. 19th Conf. on Hydrology, San Diego, CA, Amer. Meteor. Soc., JP2.3. [Available online at https://ams.confex.com/ams/pdfpapers/85393.pdf.]

  • Ray, A. J., G. M. Garfin, M. Wilder, M. Vásquez-León, M. Lenart, and A. C. Comrie, 2007: Applications of monsoon research: Opportunities to inform decision making and reduce regional vulnerability. J. Climate, 20, 16081627, doi:10.1175/JCLI4098.1.

    • Search Google Scholar
    • Export Citation
  • Richman, M. B., 1986: Rotation of principal components. J. Climatol., 6, 293335, doi:10.1002/joc.3370060305.

  • Schmidli, R. J., 1986: Climate of Phoenix, Arizona. NOAA Tech. Memo. NWS WR-177, 146 pp. [Available online at https://www.weather.gov/media/wrh/online_publications/TMs/TM-177.pdf.]

  • Schmitz, J. T., and S. L. Mullen, 1996: Water vapor transport associated with the summertime North American monsoon as depicted by ECMWF analyses. J. Climate, 9, 16211634, doi:10.1175/1520-0442(1996)009<1621:WVTAWT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Serra, Y. L., and Coauthors, 2016: The North American Monsoon GPS Transect Experiment 2013. Bull. Amer. Meteor. Soc., doi:10.1175/BAMS-D-14-00250.1, in press.

    • Search Google Scholar
    • Export Citation
  • Smith, W. P., and R. L. Gall, 1989: Tropical squall lines of the Arizona monsoon. Mon. Wea. Rev., 117, 15531569, doi:10.1175/1520-0493(1989)117<1553:TSLOTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Trapp, R. J., E. D. Robinson, M. E. Baldwin, N. S. Diffenbaugh, and B. R. J. Schwedler, 2011: Regional climate of hazardous convective weather through high-resolution dynamical downscaling. Climate Dyn., 37, 677688, doi:10.1007/s00382-010-0826-y.

    • Search Google Scholar
    • Export Citation
  • Wall, C. L., E. J. Zipser, and C. Liu, 2012: A regional climatology of monsoonal precipitation in the southwestern United States using TRMM. J. Hydrometeor., 13, 310323, doi:10.1175/JHM-D-11-031.1.

    • Search Google Scholar
    • Export Citation
  • Wallace, C. E., R. A. Maddox, and K. W. Howard, 1999: Summertime convective storm environments in central Arizona: Local observations. Wea. Forecasting, 14, 9941006, doi:10.1175/1520-0434(1999)014<0994:SCSEIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., and D. S. Gutzler, 1981: Teleconnections in the geopotential height field during the Northern Hemisphere winter. Mon. Wea. Rev., 109, 784812, doi:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wallace, J. M., C. Smith, and C. S. Bretherton, 1992: Singular value decomposition of wintertime sea surface temperature and 500-mb height anomalies. J. Climate, 5, 561576, doi:10.1175/1520-0442(1992)005<0561:SVDOWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wood, K. M., and E. A. Ritchie, 2013: An updated climatology of tropical cyclone impacts on the southwestern United States. Mon. Wea. Rev., 141, 43224336, doi:10.1175/MWR-D-13-00078.1.

    • Search Google Scholar
    • Export Citation
  • Zehnder, J. A., 2004: Dynamic mechanisms of the gulf surge. J. Geophys. Res., 109, D10107, doi:10.1029/2004JD004616.

  • Zhang, J., and Coauthors, 2011: National Mosaic and Multi-Sensor QPE (NMQ) system: Description, results, and future plans. Bull. Amer. Meteor. Soc., 92, 13211338, doi:10.1175/2011BAMS-D-11-00047.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 632 209 10
PDF Downloads 485 153 7