Reprocessing of HIRS Satellite Measurements from 1980 to 2015: Development toward a Consistent Decadal Cloud Record

W. Paul Menzel Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by W. Paul Menzel in
Current site
Google Scholar
PubMed
Close
,
Richard A. Frey Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Richard A. Frey in
Current site
Google Scholar
PubMed
Close
,
Eva E. Borbas Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Eva E. Borbas in
Current site
Google Scholar
PubMed
Close
,
Bryan A. Baum Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Bryan A. Baum in
Current site
Google Scholar
PubMed
Close
,
Geoff Cureton Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Geoff Cureton in
Current site
Google Scholar
PubMed
Close
, and
Nick Bearson Space Science and Engineering Center, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Nick Bearson in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

This paper presents the cloud-parameter data records derived from High Resolution Infrared Radiation Sounder (HIRS) measurements from 1980 through 2015 on the NOAA and MetOp polar-orbiting platforms. Over this time period, the HIRS sensor has been flown on 16 satellites from TIROS-N through NOAA-19 and MetOp-A and MetOp-B, forming a 35-yr cloud data record. Intercalibration of the Infrared Advanced Sounding Interferometer (IASI) and HIRS on MetOp-A has created confidence in the onboard calibration of this HIRS as a reference for others. A recent effort to improve the understanding of IR-channel response functions of earlier HIRS sensor radiance measurements using simultaneous nadir overpasses has produced a more consistent sensor-to-sensor calibration record. Incorporation of a cloud mask from the higher-spatial-resolution Advanced Very High Resolution Radiometer (AVHRR) improves the subpixel cloud detection within the HIRS measurements. Cloud-top pressure and effective emissivity (εf, or cloud emissivity multiplied by cloud fraction) are derived using the 15-μm spectral bands in the carbon dioxide (CO2) absorption band and implementing the CO2-slicing technique; the approach is robust for high semitransparent clouds but weak for low clouds with little thermal contrast from clear-sky radiances. This paper documents the effort to incorporate the recalibration of the HIRS sensors, notes the improvements to the cloud algorithm, and presents the HIRS cloud data record from 1980 to 2015. The reprocessed HIRS cloud data record reports clouds in 76.5% of the observations, and 36.1% of the observations find high clouds.

Corresponding author address: W. Paul Menzel, Space Science and Engineering Center, University of Wisconsin–Madison, 1225 West Dayton St., Madison, WI 53706. E-mail: paul.menzel@ssec.wisc.edu

Abstract

This paper presents the cloud-parameter data records derived from High Resolution Infrared Radiation Sounder (HIRS) measurements from 1980 through 2015 on the NOAA and MetOp polar-orbiting platforms. Over this time period, the HIRS sensor has been flown on 16 satellites from TIROS-N through NOAA-19 and MetOp-A and MetOp-B, forming a 35-yr cloud data record. Intercalibration of the Infrared Advanced Sounding Interferometer (IASI) and HIRS on MetOp-A has created confidence in the onboard calibration of this HIRS as a reference for others. A recent effort to improve the understanding of IR-channel response functions of earlier HIRS sensor radiance measurements using simultaneous nadir overpasses has produced a more consistent sensor-to-sensor calibration record. Incorporation of a cloud mask from the higher-spatial-resolution Advanced Very High Resolution Radiometer (AVHRR) improves the subpixel cloud detection within the HIRS measurements. Cloud-top pressure and effective emissivity (εf, or cloud emissivity multiplied by cloud fraction) are derived using the 15-μm spectral bands in the carbon dioxide (CO2) absorption band and implementing the CO2-slicing technique; the approach is robust for high semitransparent clouds but weak for low clouds with little thermal contrast from clear-sky radiances. This paper documents the effort to incorporate the recalibration of the HIRS sensors, notes the improvements to the cloud algorithm, and presents the HIRS cloud data record from 1980 to 2015. The reprocessed HIRS cloud data record reports clouds in 76.5% of the observations, and 36.1% of the observations find high clouds.

Corresponding author address: W. Paul Menzel, Space Science and Engineering Center, University of Wisconsin–Madison, 1225 West Dayton St., Madison, WI 53706. E-mail: paul.menzel@ssec.wisc.edu
Save
  • Aoki, T., 1985: A method for matching the HIRS/2 and AVHRR pictures of TIROS-N satellites. Tech. Proc. Second Int. TOVS Study Conf., Igls, Austria, Cooperative Institute for Meteorological Satellite Studies, 349367.

  • Baum, B. A., B. A. Wielicki, P. Minnis, and L. Parker, 1992: Cloud-property retrieval using merged HIRS and AVHRR data. J. Appl. Meteor., 31, 351369, doi:10.1175/1520-0450(1992)031<0351:CPRUMH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baum, B. A., W. P. Menzel, R. A. Frey, D. C. Tobin, R. E. Holz, S. A. Ackerman, A. K. Heidinger, and P. Yang, 2012: MODIS cloud-top property refinements for collection 6. J. Appl. Meteor. Climatol., 51, 11451163, doi:10.1175/JAMC-D-11-0203.1.

    • Search Google Scholar
    • Export Citation
  • Cao, C., M. Goldberg, and L. Wang, 2009: Spectral bias estimation of historical HIRS using IASI observations for improved fundamental climate data records. J. Atmos. Oceanic Technol., 26, 13781387, doi:10.1175/2009JTECHA1235.1.

    • Search Google Scholar
    • Export Citation
  • Chen, R., and C. Cao, 2012: Physical analysis and recalibration of MetOp HIRS using IASI for cloud studies. J. Geophys. Res., 117, D03103, doi:10.1029/2011JD016427.

    • Search Google Scholar
    • Export Citation
  • Chen, R., C. Cao, and W. P. Menzel, 2013: Intersatellite calibration of NOAA HIRS CO2 channels for climate studies. J. Geophys. Res., 118, 51905203, doi:10.1002/jgrd.50447.

    • Search Google Scholar
    • Export Citation
  • Foster, M. J., and A. Heidinger, 2013: PATMOS-x: Results from a diurnally corrected 30-yr satellite cloud climatology. J. Climate, 26, 414425, doi:10.1175/JCLI-D-11-00666.1.

    • Search Google Scholar
    • Export Citation
  • Frey, R. A., S. A. Ackerman, and B. J. Soden, 1996: Climate parameters from satellite spectral measurements. Part 1: Collocated AVHRR and HIRS/2 observations of spectral greenhouse parameter. J. Climate, 9, 327344, doi:10.1175/1520-0442(1996)009<0327:CPFSSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Hannon, S. E., L. L. Strow, and W. W. McMillan, 1996: Atmospheric infrared fast transmittance models: A comparison of two approaches. Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research II, P. B. Hays and J. Wang, Eds., International Society for Optical Engineering (SPIE Proceedings, Vol. 2830), 94–105, doi:10.1117/12.256106.

  • Heidinger, A. K., A. T. Evan, M. J. Foster, and A. Walther, 2012: A naive Bayesian cloud-detection scheme derived from CALIPSO and applied within PATMOS-x. J. Appl. Meteor. Climatol., 51, 11291144, doi:10.1175/JAMC-D-11-02.1.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., M. J. Foster, A. Walther, and X. Zhao, 2014: The Pathfinder Atmospheres–Extended AVHRR climate dataset. Bull. Amer. Meteor. Soc., 95, 909922, doi:10.1175/BAMS-D-12-00246.1.

    • Search Google Scholar
    • Export Citation
  • Heidinger, A. K., M. J. Foster, D. Botambekov, M. Hiley, A. Walther, and Y. Li, 2016: Using the NASA EOS A-Train to probe the performance of the NOAA PATMOS-x cloud fraction CDR. Remote Sens., 8, 511, doi:10.3390/rs8060511.

    • Search Google Scholar
    • Export Citation
  • Kalnay, E., and Coauthors, 1996: The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 77, 437471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kolat, U., 2010: Re-evaluation of HIRS detection of high clouds. M.S. thesis, Dept. of Atmospheric and Oceanic Sciences, University of Wisconsin–Madison, 47 pp.

  • Kolat, U., W. P. Menzel, E. Olson, and R. Frey, 2013: Very high cloud detection in more than two decades of HIRS data. J. Geophys. Res., 118, 32783284, doi:10.1029/2012JD018496.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., T. J. Schmit, and D. P. Wylie, 1990: Cloud characteristics over central Amazonia during GTE/ABLE 2B derived from multispectral visible and infrared spin scan radiometer atmospheric sounder observations. J. Geophys. Res., 95, 17 03917 042, doi:10.1029/JD095iD10p17039.

    • Search Google Scholar
    • Export Citation
  • Menzel, W. P., and Coauthors, 2008: MODIS global cloud-top pressure and amount estimation: Algorithm description and results. J. Appl. Meteor. Climatol., 47, 11751198, doi:10.1175/2007JAMC1705.1.

    • Search Google Scholar
    • Export Citation
  • Nagle, F. W., and R. E. Holz, 2009: Computationally efficient methods of collocating satellite, aircraft, and ground observations. J. Atmos. Oceanic Technol., 26, 15851595, doi:10.1175/2008JTECHA1189.1.

    • Search Google Scholar
    • Export Citation
  • Pavolonis, M. J., A. K. Heidinger, and T. Uttal, 2005: Daytime global cloud typing from AVHRR and VIIRS: Algorithm description, validation, and comparisons. J. Appl. Meteor., 44, 804826, doi:10.1175/JAM2236.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., S. A. Tjemkes, M. Gube, and L. van de Berg, 1997: Monitoring deep convection and convective overshooting with Meteosat. Adv. Space Res., 19, 433441, doi:10.1016/S0273-1177(97)00051-3.

    • Search Google Scholar
    • Export Citation
  • Shi, L., J. J. Bates, and C. Cao, 2008: Scene radiance–dependent intersatellite biases of HIRS longwave channels. J. Atmos. Oceanic Technol., 25, 22192229, doi:10.1175/2008JTECHA1058.1.

    • Search Google Scholar
    • Export Citation
  • Smith, N., W. P. Menzel, E. Weisz, A. K. Heidinger, and B. A. Baum, 2013: A uniform space–time gridding algorithm for comparison of satellite data products: Characterization and sensitivity study. J. Appl. Meteor. Climatol., 52, 255268, doi:10.1175/JAMC-D-12-031.1.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., D. O’Brien, P. J. Webster, P. Pilewski, S. Kato, and J.-L. Li, 2015: The albedo of Earth. Rev. Geophys., 53, 141163, doi:10.1002/2014RG000449.

    • Search Google Scholar
    • Export Citation
  • Strow, L. L., S. E. Hannon, S. De-Souza Machado, H. E. Motteler, and D. C. Tobin, 2006: Validation of the Atmospheric Infrared Sounder radiative transfer algorithm. J. Geophys. Res., 111, D09S06, doi:10.1029/2005JD006146.

    • Search Google Scholar
    • Export Citation
  • Tobin, D. C., H. E. Revercomb, C. C. Moeller, and T. S. Pagano, 2006: Use of Atmospheric Infrared Sounder high-spectral resolution spectra to assess the calibration of Moderate Resolution Imaging Spectroradiometer on EOS Aqua. J. Geophys. Res., 111, D09S05, doi:10.1029/2005JD006095.

    • Search Google Scholar
    • Export Citation
  • Wylie, D. P., and W. P. Menzel, 1999: Eight years of high cloud statistics using HIRS. J. Climate, 12, 170184, doi:10.1175/1520-0442-12.1.170.

    • Search Google Scholar
    • Export Citation
  • Wylie, D. P., D. L. Jackson, W. P. Menzel, and J. J. Bates, 2005: Trends in global cloud cover in two decades of HIRS observations. J. Climate, 18, 30213031, doi:10.1175/JCLI3461.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 441 178 6
PDF Downloads 238 54 2