Regional Variability of Rain Clouds in the Amazon Basin as Seen by a Network of Weather Radars

I. Saraiva Meteorology Division, Regional Center of Manaus, Operations and Management Center of the Amazonian Protection System, and Graduate Program in Climate and Environment, National Institute for Amazonian Research, Manaus, Brazil

Search for other papers by I. Saraiva in
Current site
Google Scholar
PubMed
Close
,
M. A. F. Silva Dias Department of Atmospheric Sciences, University of São Paulo, São Paulo, Brazil

Search for other papers by M. A. F. Silva Dias in
Current site
Google Scholar
PubMed
Close
,
C. A. R. Morales Department of Atmospheric Sciences, University of São Paulo, São Paulo, Brazil

Search for other papers by C. A. R. Morales in
Current site
Google Scholar
PubMed
Close
, and
J. M. B. Saraiva Meteorology Division, Regional Center of Manaus, Operations and Management Center of the Amazonian Protection System, Manaus, Brazil

Search for other papers by J. M. B. Saraiva in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new dataset based on 5 yr of operational meteorological weather radars from the Amazon Protection System has enabled new knowledge in relation to rainfall in the Amazon basin. The rainy features are analyzed for 10 different regions in terms of the annual and diurnal cycles of radar reflectivity, as well as the vertical distribution, in addition to lightning data. Similarities between the annual and diurnal cycles are found in the northwestern and western, southwestern and southern, and northeastern and northern Amazon. Nocturnal peaks are found in stratiform fraction in the southern, southwestern, western, northwestern, northern, central western, and coastal regions. The convective fractions in the western, northwestern, northern, and central eastern regions also show nocturnal peaks. The radar reflectivity vertical distributions analysis indicates that in the northern coast close to Belém, heavy rainfall with deep convective systems is observed throughout the year, while heavy rainfall in the central Amazon close to Manaus, Tefé, and Santarém occurs in the dry season. More oceanic-like clouds are also observed there and in other locations on the northern coast like Macapá, where the frequency of lightning is quite low. São Gabriel da Cachoeira, located in the northwest portion of the Amazon basin, has a regime with rainfall in all seasons with a slight decrease from August to October when the systems become more convective and have more lightning.

Corresponding author e-mail: Ivan Saraiva, ivan.saraiva@sipam.gov.br

Abstract

A new dataset based on 5 yr of operational meteorological weather radars from the Amazon Protection System has enabled new knowledge in relation to rainfall in the Amazon basin. The rainy features are analyzed for 10 different regions in terms of the annual and diurnal cycles of radar reflectivity, as well as the vertical distribution, in addition to lightning data. Similarities between the annual and diurnal cycles are found in the northwestern and western, southwestern and southern, and northeastern and northern Amazon. Nocturnal peaks are found in stratiform fraction in the southern, southwestern, western, northwestern, northern, central western, and coastal regions. The convective fractions in the western, northwestern, northern, and central eastern regions also show nocturnal peaks. The radar reflectivity vertical distributions analysis indicates that in the northern coast close to Belém, heavy rainfall with deep convective systems is observed throughout the year, while heavy rainfall in the central Amazon close to Manaus, Tefé, and Santarém occurs in the dry season. More oceanic-like clouds are also observed there and in other locations on the northern coast like Macapá, where the frequency of lightning is quite low. São Gabriel da Cachoeira, located in the northwest portion of the Amazon basin, has a regime with rainfall in all seasons with a slight decrease from August to October when the systems become more convective and have more lightning.

Corresponding author e-mail: Ivan Saraiva, ivan.saraiva@sipam.gov.br
Save
  • Albrecht, R. I., and M. A. F. Silva Dias, 2005: Microphysical evidence of the transition between predominant convective/stratiform rainfall associated with the intraseasonal oscillation in the southwest Amazon. Acta Amazonica, 35, 175184, doi:10.1590/S0044-59672005000200007.

    • Search Google Scholar
    • Export Citation
  • Albrecht, R. I., C. A. Morales, and M. A. F. Silva Dias, 2011: Electrification of precipitating systems over the Amazon: Physical processes of thunderstorm development. J. Geophys. Res., 116, D08209, doi:10.1029/2010JD014756.

    • Search Google Scholar
    • Export Citation
  • Alcântara, C. R., M. A. F. Silva Dias, E. P. Souza, and J. C. P. Cohen, 2011: Verification of the role of the low level jets in Amazon squall lines. Atmos. Res., 100, 3644, doi:10.1016/j.atmosres.2010.12.023.

    • Search Google Scholar
    • Export Citation
  • Anagnostou, E. N., and W. F. Krajewski, 1997: Simulation of radar reflectivity fields: Algorithm formulation and evaluation. Water Resour. Res., 33, 14191428, doi:10.1029/97WR00233.

    • Search Google Scholar
    • Export Citation
  • Anagnostou, E. N., and C. A. Morales, 2002: Rainfall estimation from TOGA radar observations during LBA field campaign. J. Geophys. Res., 107, 8068, doi:10.1029/2001JD000377.

    • Search Google Scholar
    • Export Citation
  • Anagnostou, E. N., C. A. Morales, and T. Dinku, 2001: The use of TRMM precipitation radar observations in determining ground radar calibration biases. J. Atmos. Oceanic Technol., 18, 616628, doi:10.1175/1520-0426(2001)018<0616:TUOTPR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Andreae, M. O., D. Rosenfeld, P. Artaxo, A. A. Costa, G. P. Frank, K. M. Longo, and M. A. F. Silva Dias, 2004: Smoking rain clouds over the Amazon. Science, 303, 13371342, doi:10.1126/science.1092779.

    • Search Google Scholar
    • Export Citation
  • Andrieu, H., J. D. Creutin, G. Delrieu, and D. Faure, 1997: Use of a weather radar for the hydrology of a mountainous area. Part I: Radar measurement interpretation. J. Hydrol., 193, 125, doi:10.1016/S0022-1694(96)03202-7.

    • Search Google Scholar
    • Export Citation
  • Artaxo, P., and Coauthors, 2002: Physical and chemical properties of aerosols in the wet and dry seasons in Rondônia, Amazonia. J. Geophys. Res., 107, 8081, doi:10.1029/2001JD000666.

    • Search Google Scholar
    • Export Citation
  • Bean, B. R., and E. J. Dutton, 1968: Radio Meteorology. Dover Publications Inc., 417 pp.

  • Bech, J., B. Codina, J. Lorente, and D. Bebbington, 2003: The sensitivity of single polarization weather radar beam blockage correction to variability in the vertical refractivity gradient. J. Atmos. Oceanic Technol., 20, 845855, doi:10.1175/1520-0426(2003)020<0845:TSOSPW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bechtold, P., J.-P. Chaboureau, A. Beljaars, A. K. Betts, M. Köhler, M. Miller, and J.-L. Redelsperger, 2004: The simulation of the diurnal cycle of convective precipitation over land in a global model. Quart. J. Roy. Meteor. Soc., 130, 31193137, doi:10.1256/qj.03.103.

    • Search Google Scholar
    • Export Citation
  • Buarque, D. C., R. C. D. de Paiva, R. T. Clarke, and C. A. B. Mendes, 2011: A comparison of Amazon rainfall characteristics derived from TRMM, CMORPH and the Brazilian national rain gauge network. J. Geophys. Res., 116, D19105, doi:10.1029/2011JD016060.

    • Search Google Scholar
    • Export Citation
  • Carvalho, L. M. V., C. Jones, and M. A. F. Silva Dias, 2002: Intraseasonal large-scale circulations and mesoscale convective activity in tropical South America during the TRMM-LBA campaign. J. Geophys. Res., 107, 8042, doi:10.1029/2001JD000745.

    • Search Google Scholar
    • Export Citation
  • Cifelli, R., W. A. Petersen, L. D. Carey, S. A. Rutledge, and M. A. F. Silva Dias, 2002: Radar observations of the kinematic, microphysical, and precipitation characteristics of two MCSs in TRMM LBA. J. Geophys. Res., 107, 8077, doi:10.1029/2000JD000264.

    • Search Google Scholar
    • Export Citation
  • Cohen, J. C. P., M. A. F. Silva Dias, and C. A. Nobre, 1995: Environmental conditions associated with Amazonian squall lines: A case study. Mon. Wea. Rev., 123, 31633174, doi:10.1175/1520-0493(1995)123<3163:ECAWAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cohen, J. C. P., D. R. Fitzjarrald, F. A. F. D’Oliveira, I. Saraiva, I. R. S. Barbosa, A. W. Gandu, and P. A. Kuhn, 2014: Radar-observed spatial and temporal rainfall variability near the Tapajós-Amazon confluence. Rev. Bras. Meteor., 29, 2330, doi:10.1590/0102-778620130058.

    • Search Google Scholar
    • Export Citation
  • De Oliveira, A. P., and D. R. Fitzjarrald, 1993: The Amazon river breeze and the local boundary layer: I. Observations. Bound.-Layer Meteor., 63, 141162, doi:10.1007/BF00705380.

    • Search Google Scholar
    • Export Citation
  • Dos Santos, M. J., M. A. F. Silva Dias, and E. D. Freitas, 2014: Influence of local circulations on wind, moisture, and precipitation close to Manaus City, Amazon Region, Brazil. J. Geophys. Res., 119, 13 23313 249, doi:10.1002/2014JD021969.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. 2nd ed. Academic Press, 562 pp.

  • Figueroa, S. N., and C. A. Nobre, 1990: Precipitations distribution over central and western tropical South America. Climanálise, 5, 3645.

    • Search Google Scholar
    • Export Citation
  • Greco, S., and Coauthors, 1990: Rainfall and surface kinematic conditions over central Amazonia during ABLE 2B. J. Geophys. Res., 95, 17 00117 014, doi:10.1029/JD095iD10p17001.

    • Search Google Scholar
    • Export Citation
  • Hamilton, M. G., and J. R. Tarifa, 1978: Synoptic aspects of a polar outbreak leading to frost in tropical Brazil, July 1972. Mon. Wea. Rev., 106, 15451556, doi:10.1175/1520-0493(1978)106<1545:SAOAPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Herdies, D. L., A. da Silva, M. A. F. Silva Dias, and R. N. Ferreira, 2002: Moisture budget of the bimodal pattern of the summer circulation over South America. J. Geophys. Res., 107, 8075, doi:10.1029/2001JD000997.

    • Search Google Scholar
    • Export Citation
  • Iguchi, T., and R. Meneghini, 1994: Intercomparison of single-frequency methods for retrieving a vertical rain profile from airborne or spaceborne radar data. J. Atmos. Oceanic Technol., 11, 15071516, doi:10.1175/1520-0426(1994)011<1507:IOSFMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kitchen, M., and R. M. Blackall, 1992: Representativeness errors in comparisons between radar and gauge measurements of rainfall. J. Hydrol., 134, 1333, doi:10.1016/0022-1694(92)90026-R.

    • Search Google Scholar
    • Export Citation
  • Kulie, M. S., M. Robinson, D. A. Marks, B. S. Ferrier, D. Rosenfeld, and D. B. Wolff, 1999: Operational processing of ground validation data for the Tropical Rainfall Measuring Mission. Preprints, 29th Int. Conf. on Radar Meteorology, Montreal, QC, Canada, Amer. Meteor. Soc., 736–739.

  • Kummerow, C., W. Barnes, T. Kozu, J. Shiue, and J. Simpson, 1998: The Tropical Rainfall Measuring Mission (TRMM) sensor package. J. Atmos. Oceanic Technol., 15, 809817, doi:10.1175/1520-0426(1998)015<0809:TTRMMT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lang, T. J., S. W. Nesbitt, and L. D. Carey, 2009: On the correction of partial beam blockage in polarimetric radar data. J. Atmos. Oceanic Technol., 26, 943957, doi:10.1175/2008JTECHA1133.1.

    • Search Google Scholar
    • Export Citation
  • Lee, A. C. L., 1986: An experimental study of the remote location of lightning flashes using a VLF arrival time difference technique. Quart. J. Roy. Meteor. Soc., 112, 203229, doi:10.1002/qj.49711247112.

    • Search Google Scholar
    • Export Citation
  • Liu, C., E. J. Zipser, D. J. Cecil, S. W. Nesbitt, and S. Sherwood, 2008: A cloud and precipitation feature database from nine years of TRMM observations. J. Appl. Meteor. Climatol., 47, 27122728, doi:10.1175/2008JAMC1890.1.

    • Search Google Scholar
    • Export Citation
  • Longo, M., R. De Camargo, and M. A. F. Silva Dias, 2004: Análise das características dinâmicas e sinóticas de um evento de friagem durante a estação chuvosa no sudoeste da Amazônia. Rev. Bras. Meteor., 19, 5972. [Available online at http://www.rbmet.org.br/port/revista/revista_artigo.php?id_artigo=43.]

    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., W. B. Rossow, R. L. Guedes, and A. W. Walker, 1998: Life cycle variations of mesoscale convective systems over the Americas. Mon. Wea. Rev., 126, 16301654, doi:10.1175/1520-0493(1998)126<1630:LCVOMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Machado, L. A. T., and Coauthors, 2014: The CHUVA project: How does convection vary across Brazil? Bull. Amer. Meteor. Soc., 95, 13651380, doi:10.1175/BAMS-D-13-00084.1.

    • Search Google Scholar
    • Export Citation
  • Maddox, R. A., J. Zhang, J. J. Gourley, and K. W. Howard, 2002: Weather radar coverage over the contiguous United States. Wea. Forecasting, 17, 927934, doi:10.1175/1520-0434(2002)017<0927:WRCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Malkomes, M., F. Fukuda, F. Rocheleau, and J. Werner, 2002: The SIVAM project: Weather radar network for the Amazon region. Proc. Second European Conf. on Radar in Meteorology and Hydrology, Delft, Netherlands, European Conference on Radar in Meteorology and Hydrology, 331–334. [Available online at http://copernicus.org/erad/online/erad-331.pdf.]

  • Marengo, J. A., C. A. Nobre, and A. D. Culf, 1997: Climatic impacts of “friagens” in forested and deforested areas of the Amazon basin. J. Appl. Meteor., 36, 15531566, doi:10.1175/1520-0450(1997)036<1553:CIOFIF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martins, J. A., M. A. F. Silva Dias, and F. L. T. Gonçalves, 2009: Impact of biomass burning aerosols on precipitation in the Amazon: A modeling case study. J. Geophys. Res., 114, D02207, doi:10.1029/2007JD009587.

    • Search Google Scholar
    • Export Citation
  • Mohr, K. I., J. S. Famiglietti, and E. J. Zipser, 1999: The contribution to tropical rainfall with respect to convective system type, size, and intensity estimated from the 85-GHz ice-scattering signature. J. Appl. Meteor., 38, 596606, doi:10.1175/1520-0450(1999)038<0596:TCTTRW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Molion, L. C. B., 1987: Climatologia dinâmica da região Amazônica: Mecanismos de precipitação. Rev. Bras. Meteor., 2, 107117.

  • Morales, C. A., J. R. Neves, and E. Anselmo, 2011: Sferics Timing and Ranging Network—STARNET: Evaluation over South America. Proc. 14th Int. Conf. on Atmospheric Electricity, Rio de Janeiro, Brazil, International Association of Meteorology and Atmospheric Sciences, 4 pp.

  • Negri, A. J., R. F. Adler, E. J. Nelkin, and G. J. Huffman, 1994: Regional rainfall climatologies derived from Special Sensor Microwave Imager (SSM/I) data. Bull. Amer. Meteor. Soc., 75, 11651182, doi:10.1175/1520-0477(1994)075<1165:RRCDFS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Negri, A. J., L. Xu, and R. F. Adler, 2002: A TRMM-calibrated infrared rainfall algorithm applied over Brazil. J. Geophys. Res., 107, 8048, doi:10.1029/2000JD000265.

    • Search Google Scholar
    • Export Citation
  • Nesbitt, S. W., and E. J. Zipser, 2003: The diurnal cycle of rainfall and convective intensity according to three years of TRMM measurements. J. Climate, 16, 14561475, doi:10.1175/1520-0442-16.10.1456.

    • Search Google Scholar
    • Export Citation
  • Oliveira, A. S., 1986: Interações entre sistemas frontais na América do Sul e a convecção da Amazônia. Dissertação de Mestrado, Dept. de Meteorologia, Instituto Nacional de Pesquisas Espaciais, 246 pp.

  • Parmenter, F. C., 1976: A Southern Hemisphere cold front passage at the equator. Bull. Amer. Meteor. Soc., 57, 14351440, doi:10.1175/1520-0477(1976)057<1435:ASHCFP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and S. A. Rutledge, 2001: Regional variability in tropical convection: Observations from TRMM. J. Climate, 14, 35663586, doi:10.1175/1520-0442(2001)014<3566:RVITCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., S. W. Nesbitt, R. J. Blakeslee, R. Cifelli, P. Hein, and S. A. Rutledge, 2002: TRMM observations of intraseasonal variability in convective regimes over the Amazon. J. Climate, 15, 12781294, doi:10.1175/1520-0442(2002)015<1278:TOOIVI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rao, V. B., and K. Hada, 1990: Characteristics of rainfall over Brazil: Annual variations and connections with the Southern Oscillation. Theor. Appl. Climatol., 42, 8191, doi:10.1007/BF00868215.

    • Search Google Scholar
    • Export Citation
  • Rickenbach, T. M., 2004: Nocturnal cloud systems and the diurnal variation of clouds and rainfall in southwestern Amazonia. Mon. Wea. Rev., 132, 12011219, doi:10.1175/1520-0493(2004)132<1201:NCSATD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rickenbach, T. M., R. N. Ferreira, J. B. Halverson, D. L. Herdies, and M. A. F. Silva Dias, 2002: Modulation of convection in the southwestern Amazon basin by extratropical stationary fronts. J. Geophys. Res., 107, doi:10.1029/2000JD000263.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., and M. A. F. Silva Dias, 2008: Can the slowing of auto-conversion result in increasing precipitation? iLEAPS Newsletter, No. 5, International Geosphere-Biosphere Programme, Stockholm, Sweden, 30–33.

  • Rosenfeld, D., E. Amitai, and D. B. Wolff, 1995: Classification of rain regimes by the three-dimensional properties of reflectivity fields. J. Appl. Meteor., 34, 198211, doi:10.1175/1520-0450(1995)034<0198:CORRBT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rowe, A. K., and R. A. Houze Jr., 2014: Microphysical characteristics of MJO convection over the Indian Ocean during DYNAMO. J. Geophys. Res., 119, 25432554, doi:10.1002/2013JD020799.

    • Search Google Scholar
    • Export Citation
  • Saad, S. I., H. R. da Rocha, M. A. F. Silva Dias, and R. Rosolem, 2010: Can the deforestation breeze change the rainfall in Amazonia? A case study for the BR-163 highway region. Earth Interact., 14, doi:10.1175/2010EI351.1.

    • Search Google Scholar
    • Export Citation
  • Saraiva, I., 2010: Características dos sistemas precipitantes observados via radar meteorológico de Manaus. Dissertação de Mestrado, Dept. de Ciências Atmosféricas, Universidade de São Paulo, 139 pp. [Available online at http://www.iag.usp.br/pos/sites/default/files/m_ivan_saraiva.pdf.]

  • Satyamurty, P., C. A. Nobre, and P. L. Silva Dias, 1998: South America. Meteorology of the Southern Hemisphere, Meteor. Monogr., No. 49, Amer. Meteor. Soc., 119–139.

  • Scarchilli, G., E. Gorgucci, D. Giuli, L. Baldini, L. Facheris, and E. Palmisano, 1995: Weather radar calibration by means of the metallic sphere and multiparameter radar measurements. Nuovo Cimento, 18C, 5770, doi:10.1007/BF02561459.

    • Search Google Scholar
    • Export Citation
  • Silva Dias, M. A. F., and Coauthors, 2002: Clouds and rain processes in a biosphere-atmosphere interaction context in the Amazon region. J. Geophys. Res., 107, 8072, doi:10.1029/2001JD000335.

    • Search Google Scholar
    • Export Citation
  • Silva Dias, M. A. F., P. L. Silva Dias, M. Longo, D. R. Fitzjarrald, and A. S. Denning, 2004: River breeze circulation in eastern Amazonia: Observations and modelling results. Theor. Appl. Climatol., 78, 111121, doi:10.1007/s00704-004-0047-6.

    • Search Google Scholar
    • Export Citation
  • Silva Dias, M. A. F., R. Avissar, and P. Silva Dias, 2009a: Modeling the regional and remote climatic impact of deforestation. Amazonia and Global Change, Geophys. Monogr., Vol. 186, Amer. Geophys. Union, 251–260, doi:10.1029/2008GM000778.

  • Silva Dias, M. A. F., J. R. Rozante, and L. A. T. Machado, 2009b: Complexos convectivos de mesoescala na América do Sul. Tempo e Clima no Brasil. I. F. A. Cavalcanti et al., Eds., Oficina de Textos, 181–191.

  • Steiner, M., R. A. Houze Jr., and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 19782007, doi:10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ter Steege, H., and Coauthors, 2013: Hyperdominance in the Amazonian tree flora. Science, 342, doi:10.1126/science.1243092.

  • Vera, C., and Coauthors, 2006: Toward a unified view of the American monsoon systems. J. Climate, 19, 49775000, doi:10.1175/JCLI3896.1.

    • Search Google Scholar
    • Export Citation
  • Westrick, K. J., C. F. Mass, and B. A. Colle, 1999: The limitations of the WSR-88D radar network for quantitative precipitation measurement over the coastal western United States. Bull. Amer. Meteor. Soc., 80, 22892298, doi:10.1175/1520-0477(1999)080<2289:TLOTWR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Williams, E., and Coauthors, 2002: Contrasting convective regimes over the Amazon: Implications for cloud electrification. J. Geophys. Res., 107, 8082, doi:10.1029/2001JD000380.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 19411963, doi:10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zeng, Z., S. E. Yuter, R. A. Houze Jr., and D. E. Kingsmill, 2001: Microphysics of the rapid development of heavy convective precipitation. Mon. Wea. Rev., 129, 18821904, doi:10.1175/1520-0493(2001)129<1882:MOTRDO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 382 122 9
PDF Downloads 263 81 3