SAFIR-3000 Lightning Statistics over the Beijing Metropolitan Region during 2005–07

Fan Wu Key Laboratory of Cloud-Precipitation Physics and Severe Storms, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, China

Search for other papers by Fan Wu in
Current site
Google Scholar
PubMed
Close
,
Xiaopeng Cui Key Laboratory of Cloud-Precipitation Physics and Severe Storms, Institute of Atmospheric Physics, Chinese Academy of Sciences, and University of Chinese Academy of Sciences, Beijing, and Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China

Search for other papers by Xiaopeng Cui in
Current site
Google Scholar
PubMed
Close
,
Da-Lin Zhang Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, Maryland, and Key State Laboratory for Severe Weather, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China

Search for other papers by Da-Lin Zhang in
Current site
Google Scholar
PubMed
Close
,
Dongxia Liu Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Search for other papers by Dongxia Liu in
Current site
Google Scholar
PubMed
Close
, and
Dong Zheng Key State Laboratory for Severe Weather, Chinese Academy of Meteorological Sciences, China Meteorological Administration, Beijing, China

Search for other papers by Dong Zheng in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

In this study, the spatiotemporal characteristics of cloud-to-ground (CG) and intracloud (IC) lightning flashes observed by Surveillance et Alerte Foudre par Interférometrie Radioélectrique (SAFIR)-3000 over the Beijing metropolitan region (BMR) during 2005–07 were investigated. The results showed the presence of 299 lightning days with 241 688 flashes, most of which were IC lightning flashes. Only 19% of the total flashes were CG lightning flashes; 14% of these CG flashes were positive. Most lightning activity occurred during the summer months (June–August), with a major diurnal peak around 1900 Beijing standard time (BST) and a secondary peak around 2300 BST. Spatial variations in flash density and lightning days both exhibited an obvious southeastwardly increasing pattern, with higher flash densities or more lightning days occurring in the southeastern plains and lower values distributed on the northwestern mountains. The Z ratio (IC/CG lightning flashes) exhibited a similar spatial pattern, but the percentage of positive CG lightning flashes showed an almost opposite pattern. The results also showed significant topographic effects on the spatiotemporal variations in lightning activity. That is, flash counts on the northeastern and southwestern mountains peaked in the afternoon, whereas those on the southeastern plains peaked in the late night to early morning, which could be attributed to the propagation of thunderstorms from the mountains to the plains. The results showed that the SAFIR-3000 lightning data are more useful than CG lightning data alone for forecasting the development and propagation of thunderstorms over the BMR.

Corresponding author e-mail: Xiaopeng Cui, xpcui@mail.iap.ac.cn

Abstract

In this study, the spatiotemporal characteristics of cloud-to-ground (CG) and intracloud (IC) lightning flashes observed by Surveillance et Alerte Foudre par Interférometrie Radioélectrique (SAFIR)-3000 over the Beijing metropolitan region (BMR) during 2005–07 were investigated. The results showed the presence of 299 lightning days with 241 688 flashes, most of which were IC lightning flashes. Only 19% of the total flashes were CG lightning flashes; 14% of these CG flashes were positive. Most lightning activity occurred during the summer months (June–August), with a major diurnal peak around 1900 Beijing standard time (BST) and a secondary peak around 2300 BST. Spatial variations in flash density and lightning days both exhibited an obvious southeastwardly increasing pattern, with higher flash densities or more lightning days occurring in the southeastern plains and lower values distributed on the northwestern mountains. The Z ratio (IC/CG lightning flashes) exhibited a similar spatial pattern, but the percentage of positive CG lightning flashes showed an almost opposite pattern. The results also showed significant topographic effects on the spatiotemporal variations in lightning activity. That is, flash counts on the northeastern and southwestern mountains peaked in the afternoon, whereas those on the southeastern plains peaked in the late night to early morning, which could be attributed to the propagation of thunderstorms from the mountains to the plains. The results showed that the SAFIR-3000 lightning data are more useful than CG lightning data alone for forecasting the development and propagation of thunderstorms over the BMR.

Corresponding author e-mail: Xiaopeng Cui, xpcui@mail.iap.ac.cn
Save
  • Antonescu, B., and S. Burcea, 2010: A cloud-to-ground lightning climatology for Romania. Mon. Wea. Rev., 138, 579591, doi:10.1175/2009MWR2975.1.

    • Search Google Scholar
    • Export Citation
  • Beijing Municipal Bureau of Statistics, 2015: Yearly review (in Chinese). [Available online at http://www.bjstats.gov.cn/tjsj/cysj/201511/t20151109_311727.html.]

  • Boccippio, D. J., K. L. Cummins, H. J. Christian, and S. J. Goodman, 2001: Combined satellite- and surface-based estimation of the intracloud–cloud-to-ground lightning ratio over the continental United States. Mon. Wea. Rev., 129, 108122, doi:10.1175/1520-0493(2001)129<0108:CSASBE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bourscheidt, V., O. Pinto, K. P. Naccarato, and I. R. C. A. Pinto, 2009: The influence of topography on the cloud-to-ground lightning density in south Brazil. Atmos. Res., 91, 508513, doi:10.1016/j.atmosres.2008.06.010.

    • Search Google Scholar
    • Export Citation
  • Brook, M., M. Nakano, P. Krehbiel, and T. Takeuti, 1982: The electrical structure of the hokuriku winter thunderstorms. J. Geophys. Res., 87, 12071215, doi:10.1029/JC087iC02p01207.

    • Search Google Scholar
    • Export Citation
  • Burrows, W. R., and B. Kochtubajda, 2010: A decade of cloud-to-ground lightning in Canada: 1999–2008. Part 1: Flash density and occurrence. Atmos.–Ocean, 48, 177194, doi:10.3137/AO1118.2010.

    • Search Google Scholar
    • Export Citation
  • Carey, L. D., and S. A. Rutledge, 1998: Electrical and multiparameter radar observations of a severe hailstorm. J. Geophys. Res., 103, 13 97914 000, doi:10.1029/97JD02626.

    • Search Google Scholar
    • Export Citation
  • Chen, S., Y. Wang, W. Zhang, and M. Chen, 2011: Intensifying mechanism of the convective storm moving from the mountain to the plain over Beijing area. Meteor. Mon., 37, 802813.

    • Search Google Scholar
    • Export Citation
  • Chronis, T., L. D. Carey, C. J. Schultz, E. V. Schultz, K. M. Calhoun, and S. J. Goodman, 2015: Exploring lightning jump characteristics. Wea. Forecasting, 30, 2337, doi:10.1175/WAF-D-14-00064.1.

    • Search Google Scholar
    • Export Citation
  • Cummins, K. L., 2014: Mapping the impact of terrain on lightning incidence and multiple ground contacts in cloud-to-ground flashes. Proc. 15th Int. Conf. on Atmospheric Electricity, Norman, OK, IUGG/IAMAS International Commission on Atmospheric Electricity. [Available online at http://www.nssl.noaa.gov/users/mansell/icae2014/preprints/Cummins_68.pdf.]

  • Czernecki, B., M. Taszarek, L. Kolendowicz, and J. Konarski, 2016: Relationship between human observations of thunderstorms and the PERUN lightning detection network in Poland. Atmos. Res., 167, 118128, doi:10.1016/j.atmosres.2015.08.003.

    • Search Google Scholar
    • Export Citation
  • Engholm, C. D., E. R. Williams, and R. M. Dole, 1990: Meteorological and electrical conditions associated with positive cloud-to-ground lightning. Mon. Wea. Rev., 118, 470487, doi:10.1175/1520-0493(1990)118<0470:MAECAW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Enno, S. E., 2015: Comparison of thunderstorm hours registered by the lightning detection network and human observers in Estonia, 2006–2011. Theor. Appl. Climatol., 121, 1322, doi:10.1007/s00704-014-1218-8.

    • Search Google Scholar
    • Export Citation
  • Fierro, A. O., E. R. Mansell, C. L. Ziegler, and D. R. MacGorman, 2012: Application of a lightning data assimilation technique in the WRF-ARW Model at cloud-resolving scales for the tornado outbreak of 24 May 2011. Mon. Wea. Rev., 140, 26092627, doi:10.1175/MWR-D-11-00299.1.

    • Search Google Scholar
    • Export Citation
  • Gao, L., 2009: To evaluate the detection ability of lightning location system via “concentric circles method” (in Chinese). Central China Electric Power, 22, 2629.

    • Search Google Scholar
    • Export Citation
  • He, H., and H. Li, 2005: Preliminary analysis of lightning characteristics in Beijing (in Chinese). Meteor. Sci. Tech., 33, 496500.

  • Huang, R., Y. Wang, and W. Zhang, 2012: Initiating and intensifying mechanism of a local thunderstorm over complex terrain of Beijing (in Chinese). Torrential Rain Disasters, 31, 232241.

    • Search Google Scholar
    • Export Citation
  • Kotroni, V., and K. Lagouvardos, 2008: Lightning occurrence in relation with elevation, terrain slope, and vegetation cover in the Mediterranean. J. Geophys. Res., 113, D21118, doi:10.1029/2008JD010605.

    • Search Google Scholar
    • Export Citation
  • Li, J., R. Yu, and J. Wang, 2008: Diurnal variations of summer precipitation in Beijing (in Chinese). Chin. Sci. Bull., 53, 19331936.

    • Search Google Scholar
    • Export Citation
  • Li, J., H. Song, W. Xiao, X. Du, and F. Guo, 2013: Temporal-spatial characteristics of lightning over Beijing and its circumjacent regions (in Chinese). Trans. Atmos. Sci., 36, 235245.

    • Search Google Scholar
    • Export Citation
  • Li, R., X. Lu, H. Zhang, J. Li, and Y. Zhang, 2013: Temporal and spatial distribution characteristics of cloud-to-ground flash from 2008 to 2010 in Beijing (in Chinese). Meteor. Environ. Sci., 36, 5256.

    • Search Google Scholar
    • Export Citation
  • Liou, Y. A., and S. K. Kar, 2010: Study of cloud-to-ground lightning and precipitation and their seasonal and geographical characteristics over Taiwan. Atmos. Res., 95, 115122, doi:10.1016/j.atmosres.2009.08.016.

    • Search Google Scholar
    • Export Citation
  • Liu, D., X. Qie, Y. Xiong, and G. Feng, 2011: Evolution of the total lightning activity in a leading-line and trailing stratiform mesoscale convective system over Beijing. Adv. Atmos. Sci., 28, 866878, doi:10.1007/s00376-010-0001-8.

    • Search Google Scholar
    • Export Citation
  • Liu, D., X. Qie, L. Pan, and L. Peng, 2013: Some characteristics of lightning activity and radiation source distribution in a squall line over north China. Atmos. Res., 132–133, 423433, doi:10.1016/j.atmosres.2013.06.010.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., and D. W. Burgess, 1994: Positive cloud-to-ground lightning in tornadic storms and hailstorms. Mon. Wea. Rev., 122, 16711697, doi:10.1175/1520-0493(1994)122<1671:PCTGLI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • MacGorman, D. R., D. W. Burgess, V. Mazur, W. D. Rust, W. L. Taylor, and B. C. Johnson, 1989: Lightning rates relative to tornadic storm evolution on 22 May 1981. J. Atmos. Sci., 46, 221251, doi:10.1175/1520-0469(1989)046<0221:LRRTTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marchand, M. R., and H. E. Fuelberg, 2014: Assimilation of lightning data using a nudging method involving low-level warming. Mon. Wea. Rev., 142, 48504871, doi:10.1175/MWR-D-14-00076.1.

    • Search Google Scholar
    • Export Citation
  • Miao, C., Q. Sun, A. G. Borthwick, and Q. Duan, 2016: Linkage between hourly precipitation events and atmospheric temperature changes over China during the warm season. Sci. Rep., 6, 22543, doi:10.1038/srep22543.

    • Search Google Scholar
    • Export Citation
  • Naccarato, K., O. Pinto, and I. Pinto, 2003: Evidence of thermal and aerosol effects on the cloud‐to‐ground lightning density and polarity over large urban areas of southeastern Brazil. Geophys. Res. Lett., 30, 1674, doi:10.1029/2003GL017496.

    • Search Google Scholar
    • Export Citation
  • Nishihashi, M., K.-I. Arai, C. Fujiwara, W. Mashiko, S. Yoshida, S. Hayashi, and K. Kusunoki, 2015: Characteristics of lightning jumps associated with a tornadic supercell on 2 September 2013. SOLA, 11, 1822, doi:10.2151/sola.2015-005.

    • Search Google Scholar
    • Export Citation
  • Novák, P., and H. Kyznarová, 2011: Climatology of lightning in the Czech Republic. Atmos. Res., 100, 318333, doi:10.1016/j.atmosres.2010.08.022.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., 1994: Cloud‐to‐ground lightning flash characteristics in the contiguous United States: 1989–1991. J. Geophys. Res., 99, 10 83310 841, doi:10.1029/93JD02914.

    • Search Google Scholar
    • Export Citation
  • Orville, R. E., and G. R. Huffines, 2001: Cloud-to-ground lightning in the United States: NLDN results in the first decade, 1989–98. Mon. Wea. Rev., 129, 11791193, doi:10.1175/1520-0493(2001)129<1179:CTGLIT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Petersen, W. A., and S. A. Rutledge, 1998: On the relationship between cloud‐to‐ground lightning and convective rainfall. J. Geophys. Res., 103, 14 02514 040, doi:10.1029/97JD02064.

    • Search Google Scholar
    • Export Citation
  • Pinto, O., I. Pinto, and H. de Faria, 2003: A comparative analysis of lightning data from lightning networks and LIS sensor in the north and southeast of Brazil. Geophys. Res. Lett., 30, 1073, doi:10.1029/2002GL016009.

    • Search Google Scholar
    • Export Citation
  • Poelman, D. R., 2014: A 10-year study on the characteristics of thunderstorms in Belgium based on cloud-to-ground lightning data. Mon. Wea. Rev., 142, 48394849, doi:10.1175/MWR-D-14-00202.1.

    • Search Google Scholar
    • Export Citation
  • Price, C., and D. Rind, 1993: What determines the cloud‐to‐ground lightning fraction in thunderstorms? Geophys. Res. Lett., 20, 463466, doi:10.1029/93GL00226.

    • Search Google Scholar
    • Export Citation
  • Qie, X., C. Guo, and X. Liu, 1991: The characteristics of ground flashes in Beijing and Lanzhou regions. Adv. Atmos. Sci., 8, 471478, doi:10.1007/BF02919269.

    • Search Google Scholar
    • Export Citation
  • Qie, X., Y. Yu, D. Wang, H. Wang, and R. Chu, 2002: Characteristics of cloud-to-ground lightning in Chinese inland plateau. J. Meteor. Soc. Japan, 80, 745754, doi:10.2151/jmsj.80.745.

    • Search Google Scholar
    • Export Citation
  • Rakov, V. A., and M. A. Uman, 2003: Lightning: Physics and Effects. Cambridge University Press, 698 pp.

  • Rivas Soriano, L., and F. de Pablo, 2007: Total flash density and the intracloud/cloud-to-ground lightning ratio over the Iberian Peninsula. J. Geophys. Res., 112, D13114, doi:10.1029/2006JD007624.

    • Search Google Scholar
    • Export Citation
  • Rivas Soriano, L., F. De Pablo, and C. Tomas, 2005: Ten-year study of cloud-to-ground lightning activity in the Iberian Peninsula. J. Atmos. Sol. Terr. Phys., 67, 16321639, doi:10.1016/j.jastp.2005.08.019.

    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., W. A. Petersen, and L. D. Carey, 2011: Lightning and severe weather: A comparison between total and cloud-to-ground lightning trends. Wea. Forecasting, 26, 744755, doi:10.1175/WAF-D-10-05026.1.

    • Search Google Scholar
    • Export Citation
  • Schultz, C. J., L. D. Carey, E. V. Schultz, and R. J. Blakeslee, 2015: Insight into the kinematic and microphysical processes that control lightning jumps. Wea. Forecasting, 30, 15911621, doi:10.1175/WAF-D-14-00147.1.

    • Search Google Scholar
    • Export Citation
  • Schulz, W., K. Cummins, G. Diendorfer, and M. Dorninger, 2005: Cloud‐to‐ground lightning in Austria: A 10‐year study using data from a lightning location system. J. Geophys. Res., 110, D09101, doi:10.1029/2004JD005332.

    • Search Google Scholar
    • Export Citation
  • Soula, S., and S. Chauzy, 2001: Some aspects of the correlation between lightning and rain activities in thunderstorms. Atmos. Res., 56, 355373, doi:10.1016/S0169-8095(00)00086-7.

    • Search Google Scholar
    • Export Citation
  • Takeuti, T., M. Nakano, M. Brook, D. J. Raymond, and P. Krehbiel, 1978: The anomalous winter thunderstorms of the Hokuriku Coast. J. Geophys. Res., 83, 23852394, doi:10.1029/JC083iC05p02385.

    • Search Google Scholar
    • Export Citation
  • Tapia, A., J. A. Smith, and M. Dixon, 1998: Estimation of convective rainfall from lightning observations. J. Appl. Meteor., 37, 14971509, doi:10.1175/1520-0450(1998)037<1497:EOCRFL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Taszarek, M., B. Czernecki, and A. Kozioł, 2015: A cloud-to-ground lightning climatology for Poland. Mon. Wea. Rev., 143, 42854304, doi:10.1175/MWR-D-15-0206.1.

    • Search Google Scholar
    • Export Citation
  • Villarini, G., and J. A. Smith, 2013: Spatial and temporal variability of cloud-to-ground lightning over the continental U.S. during the period 1995–2010. Atmos. Res., 124, 137148, doi:10.1016/j.atmosres.2012.12.017.

    • Search Google Scholar
    • Export Citation
  • Vogt, B. J., and S. J. Hodanish, 2014: A high-resolution lightning map of the state of Colorado. Mon. Wea. Rev., 142, 23532360, doi:10.1175/MWR-D-13-00334.1.

    • Search Google Scholar
    • Export Citation
  • Wang, Y., L. Han, and H. Wang, 2014: Statistical characteristics of convective initiation in the Beijing-Tianjin region revealed by six-year radar data. J. Meteor. Res., 28, 11271136, doi:10.1007/s13351-014-3061-3.

    • Search Google Scholar
    • Export Citation
  • Wiens, K. C., S. A. Rutledge, and S. A. Tessendorf, 2005: The 29 June 2000 supercell observed during STEPS. Part II: Lightning and charge structure. J. Atmos. Sci., 62, 41514177, doi:10.1175/JAS3615.1.

    • Search Google Scholar
    • Export Citation
  • Williams, E., M. Weber, and R. Orville, 1989: The relationship between lightning type and convective state of thunderclouds. J. Geophys. Res., 94, 13 21313 220, doi:10.1029/JD094iD11p13213.

    • Search Google Scholar
    • Export Citation
  • Xia, R., D.-L. Zhang, and B. Wang, 2015: A 6-yr cloud-to-ground lightning climatology and its relationship to rainfall over central and eastern China. J. Appl. Meteor. Climatol., 54, 24422460, doi:10.1175/JAMC-D-15-0029.1.

    • Search Google Scholar
    • Export Citation
  • Xue, Q., Q. Meng, and R. Ge, 1999: The relationship between lightning activity and severe convection weather in Beijing area in summer from 1995 to 1997 (in Chinese). Meteor. Mon., 25, 1519.

    • Search Google Scholar
    • Export Citation
  • Yang, P., G. Ren, W. Hou, and W. Liu, 2013: Spatial and diurnal characteristics of summer rainfall over Beijing municipality based on a high-density AWS dataset. Int. J. Climatol., 33, 27692780, doi:10.1002/joc.3622.

    • Search Google Scholar
    • Export Citation
  • Yang, X., J. Sun, and W. Li, 2015: An analysis of cloud-to-ground lightning in China during 2010–13. Wea. Forecasting, 30, 15371550, doi:10.1175/WAF-D-14-00132.1.

    • Search Google Scholar
    • Export Citation
  • Yin, S., W. Li, D. Chen, J.-H. Jeong, and W. Guo, 2011: Diurnal variations of summer precipitation in the Beijing area and the possible effect of topography and urbanization. Adv. Atmos. Sci., 28, 725734, doi:10.1007/s00376-010-9240-y.

    • Search Google Scholar
    • Export Citation
  • Yuan, W., W. Sun, H. Chen, and R. Yu, 2014: Topographic effects on spatiotemporal variations of short‐duration rainfall events in warm season of central north China. J. Geophys. Res., 119, 11 22311 234, doi:10.1002/2014JD022073.

    • Search Google Scholar
    • Export Citation
  • Zhang, W., Q. Meng, M. Ma, and Y. Zhang, 2011: Lightning casualties and damages in China from 1997 to 2009. Nat. Hazards, 57, 465476, doi:10.1007/s11069-010-9628-0.

    • Search Google Scholar
    • Export Citation
  • Zheng, D., Q. Meng, W. , Y. Zhang, X. Cai, and M. Ma, 2005: Spatial and temporal characteristics of cloud-to-ground lightning in summer in Beijing and its circumjacent regions (in Chinese). Chin. J. Appl. Meteor., 16, 638644.

    • Search Google Scholar
    • Export Citation
  • Zheng, D., Y. Zhang, Q. Meng, W. , and X. Yi, 2009: Total lightning characteristics and electric structure evolution in a hailstorm. Acta Meteor. Sin., 23, 233249.

    • Search Google Scholar
    • Export Citation
  • Zheng, Y., J. Chen, M. Chen, Y. Wang, and Q. Ding, 2007: Statistic characteristics and weather significance of infrared TBB during May–August in Beijing and its vicinity. Chin. Sci. Bull., 52, 34283435, doi:10.1007/s11434-007-0438-z.

    • Search Google Scholar
    • Export Citation
  • Zhou, Y., J. Zhang, and L. Sun, 2009: Statistic analysis on cloud-to-ground lightning characteristics over Beijing, Tianjin and Hebei Province. J. Catastrophol., 24, 101105.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 679 238 21
PDF Downloads 249 58 2