Influences on Observed Near-Surface Gust Factors in Landfalling U.S. Gulf Coast Hurricanes: 2004–08

Ian M. Giammanco Insurance Institute for Business and Home Safety, Richburg, South Carolina
National Wind Institute, Texas Tech University, Lubbock, Texas

Search for other papers by Ian M. Giammanco in
Current site
Google Scholar
PubMed
Close
,
John L. Schroeder Department of Geosciences, Texas Tech University, Lubbock, Texas

Search for other papers by John L. Schroeder in
Current site
Google Scholar
PubMed
Close
,
Forrest J. Masters Department of Civil and Environmental Engineering, University of Florida, Gainesville, Florida

Search for other papers by Forrest J. Masters in
Current site
Google Scholar
PubMed
Close
,
Peter J. Vickery Applied Research Associates, Raleigh, North Carolina

Search for other papers by Peter J. Vickery in
Current site
Google Scholar
PubMed
Close
,
Richard J. Krupar III National Wind Institute, Texas Tech University, Lubbock, Texas
School of Civil Engineering, University of Queensland, St. Lucia, Queensland, Australia

Search for other papers by Richard J. Krupar III in
Current site
Google Scholar
PubMed
Close
, and
Juan-Antonio Balderrama Department of Civil and Environmental Engineering, University of Florida, Gainesville, Florida

Search for other papers by Juan-Antonio Balderrama in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The deployment of ruggedized surface observing platforms by university research programs in the path of landfalling tropical cyclones has yielded a wealth of information regarding the near-surface wind flow characteristics. Data records collected by Texas Tech University’s Wind Engineering Mobile Instrument Tower Experiment and StickNet probes and by the Florida Coastal Monitoring Program along the Gulf Coast of the United States from 2004 to 2008 were compiled to examine influences on near-surface gust factors. Archived composite reflectivity data from coastal WSR-88D instruments were also merged with the tower records to investigate the influence of precipitation structure. Wind records were partitioned into 10-min segments, and the ratio of the peak moving-average 3-s-gust wind speed to the segment mean was used to define a gust factor. Observations were objectively stratified into terrain exposure categories to determine if factors beyond those associated with surface frictional effects can be extracted from the observations. Wind flow characteristics within exposure classes were weakly influenced by storm-relative position and precipitation structure. Eyewall observations showed little difference in mean gust factors when compared with other regions. In convective precipitation, only peak gust factors were slightly larger than those found in stratiform conditions, with little differences in the mean. Gust factors decreased slightly with decreasing radial distance in rougher terrain exposures and did not respond to radar-observed changes in precipitation structure. In two limited comparisons, near-surface gusts did not exceed the magnitude of the wind maximum aloft detected through wind profiles that were derived from WSR-88D velocity–azimuth displays.

Corresponding author e-mail: Ian M. Giammanco, igiammanco@ibhs.org

Abstract

The deployment of ruggedized surface observing platforms by university research programs in the path of landfalling tropical cyclones has yielded a wealth of information regarding the near-surface wind flow characteristics. Data records collected by Texas Tech University’s Wind Engineering Mobile Instrument Tower Experiment and StickNet probes and by the Florida Coastal Monitoring Program along the Gulf Coast of the United States from 2004 to 2008 were compiled to examine influences on near-surface gust factors. Archived composite reflectivity data from coastal WSR-88D instruments were also merged with the tower records to investigate the influence of precipitation structure. Wind records were partitioned into 10-min segments, and the ratio of the peak moving-average 3-s-gust wind speed to the segment mean was used to define a gust factor. Observations were objectively stratified into terrain exposure categories to determine if factors beyond those associated with surface frictional effects can be extracted from the observations. Wind flow characteristics within exposure classes were weakly influenced by storm-relative position and precipitation structure. Eyewall observations showed little difference in mean gust factors when compared with other regions. In convective precipitation, only peak gust factors were slightly larger than those found in stratiform conditions, with little differences in the mean. Gust factors decreased slightly with decreasing radial distance in rougher terrain exposures and did not respond to radar-observed changes in precipitation structure. In two limited comparisons, near-surface gusts did not exceed the magnitude of the wind maximum aloft detected through wind profiles that were derived from WSR-88D velocity–azimuth displays.

Corresponding author e-mail: Ian M. Giammanco, igiammanco@ibhs.org
Save
  • Ashcroft, J., 1994: The relationship between the gust ratio, terrain roughness, gust duration and the hourly mean wind speed. J. Wind Eng. Ind. Aerodyn., 53, 331355, doi:10.1016/0167-6105(94)90090-6.

    • Search Google Scholar
    • Export Citation
  • Balderrama, J.-A., and Coauthors, 2011: The Florida Coastal Monitoring Program (FCMP): A review. J. Wind Eng. Ind. Aerodyn., 99, 979995, doi:10.1016/j.jweia.2011.07.002.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., and G. J. Stossmeister, 1986: The structure and decay of a rainband in Hurricane Irene (1981). Mon. Wea. Rev., 114, 25902601, doi:10.1175/1520-0493(1986)114<2590:TSADOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Barnes, G. M., E. J. Zipser, D. Jorgensen, and F. D. Marks, 1983: Mesoscale and convective structure of a hurricane rainband. J. Atmos. Sci., 40, 21252137, doi:10.1175/1520-0469(1983)040<2125:MACSOA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Beljaars, A. C. M., 1987: The measurement of gustiness at routine wind stations—A review. KNMI Rep. WR87-11, 50 pp. [Available online at http://bibliotheek.knmi.nl/knmipubWR/WR87-11.pdf.]

  • Berg, R., 2009: Tropical cyclone report: Hurricane Ike (AL092008) 1–14 September 2008. National Hurricane Center Rep., 55 pp. [Available online at http://www.nhc.noaa.gov/data/tcr/AL092008_Ike.pdf.]

  • Black, M. L., R. W. Burpee, and F. D. Marks, 1996: Vertical motion characteristics of tropical cyclones determined with airborne Doppler radial velocities. J. Atmos. Sci., 53, 18871909, doi:10.1175/1520-0469(1996)053<1887:VMCOTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Black, P. G., and Coauthors, 2007: Air–sea exchange in hurricanes: Synthesis of observations from the Coupled Boundary Layer Air–Sea Transfer experiment. Bull. Amer. Meteor. Soc., 88, 357374, doi:10.1175/BAMS-88-3-357.

    • Search Google Scholar
    • Export Citation
  • Blessing, C., and F. J. Masters, 2005: Attrition of ground weather observations during hurricane landfall. Proc. 10th Americas Conf. on Wind Engineering, Baton Rouge, LA, American Association for Wind Engineering.

  • Bradbury, W. M. S., D. M. Deaves, J. C. R. Hunt, R. Kershaw, K. Nakamura, M. E. Hardman, and P. W. Bearman, 1994: The importance of convective gusts. Meteor. Appl., 1, 365378, doi:10.1002/met.5060010407.

    • Search Google Scholar
    • Export Citation
  • Browning, K. A., and R. Wexler, 1968: The determination of kinematic properties of a wind field using Doppler radar. J. Appl. Meteor., 7, 105113, doi:10.1175/1520-0450(1968)007<0105:TDOKPO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Churchill, D. D., and R. A. Houze Jr., 1984: Development and structure of winter monsoon cloud clusters on 10 December 1978. J. Atmos. Sci., 41, 933960, doi:10.1175/1520-0469(1984)041<0933:DASOWM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Cione, J. J., P. G. Black, and S. H. Houston, 2000: Surface observations in the hurricane environment. Mon. Wea. Rev., 128, 15501561, doi:10.1175/1520-0493(2000)128<1550:SOITHE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Didlake, A. C., Jr., and R. A. Houze Jr., 2009: Convective-scale downdrafts in the principal rainband of Hurricane Katrina (2005). Mon. Wea. Rev., 137, 32693293, doi:10.1175/2009MWR2827.1.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., W. M. Gray, and P. G. Black, 2005: Buoyancy of convective vertical motions in the inner core of intense hurricanes. Part I: General statistics. Mon. Wea. Rev., 133, 188208, doi:10.1175/MWR-2848.1.

    • Search Google Scholar
    • Export Citation
  • Eastin, M. D., T. L. Gardner, M. C. Link, and K. C. Smith, 2012: Surface cold pools in the outer rainbands of Tropical Storm Hanna (2008) near landfall. Mon. Wea. Rev., 140, 471491, doi:10.1175/MWR-D-11-00099.1.

    • Search Google Scholar
    • Export Citation
  • Edwards, R. P., R. J. Krupar III, R. Warkentin, and S. Resnik, 2014: Modification of local roughness length by advancing storm surge in landfalling tropical cyclones. 11th Symp. on the Urban Environment, Atlanta, GA, Amer. Meteor. Soc., 669. [Available online at https://ams.confex.com/ams/94Annual/webprogram/Paper238186.html.]

  • Franklin, J. L., M. L. Black, and K. Valde, 2003: GPS dropwindsonde wind profiles in hurricanes and their operational implications. Wea. Forecasting, 18, 3244, doi:10.1175/1520-0434(2003)018<0032:GDWPIH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1985: The downburst: Microburst and macroburst. SMRP Rep. 210, 122 pp. [NTIS PB-85-148880.]

  • Fujita, T. T., 1992: Damage survey of Hurricane Andrew in South Florida. Storm Data, Vol. 34, 25–29.

  • Giammanco, I. M., J. L. Schroeder, and M. D. Powell, 2013: GPS dropwindsonde and WSR-88D observations of tropical cyclone vertical wind profiles and their characteristics. Wea. Forecasting, 28, 7799, doi:10.1175/WAF-D-11-00155.1.

    • Search Google Scholar
    • Export Citation
  • Harper, B. A., J. D. Kepert, and J. D. Ginger, 2010: Guidelines for converting between various wind averaging periods in tropical cyclone conditions. WMO Rep. WMO/TD-1555, 64 pp. [Available online at https://www.wmo.int/pages/prog/www/tcp/documents/WMO_TD_1555_en.pdf.]

  • Houze, R. A., Jr., 1997: Stratiform precipitation in regions of convection: A meteorological paradox? Bull. Amer. Meteor. Soc., 78, 21792196, doi:10.1175/1520-0477(1997)078<2179:SPIROC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jorgensen, D. P., 1984: Mesoscale and convective-scale characteristics of mature hurricanes. Part II. Inner core structure of Hurricane Allen (1980). J. Atmos. Sci., 41, 12871311, doi:10.1175/1520-0469(1984)041<1287:MACSCO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part I: Linear theory. J. Atmos. Sci., 58, 24692484, doi:10.1175/1520-0469(2001)058<2469:TDOBLJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2006a: Observed boundary layer wind structure and balance in the hurricane core. Part I: Hurricane Georges. J. Atmos. Sci., 63, 21692193, doi:10.1175/JAS3745.1.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., 2006b: Observed boundary layer wind structure and balance in the hurricane core. Part II: Hurricane Mitch. J. Atmos. Sci., 63, 21942211, doi:10.1175/JAS3746.1.

    • Search Google Scholar
    • Export Citation
  • Kepert, J. D., and Y. Wang, 2001: The dynamics of boundary layer jets within the tropical cyclone core. Part II: Nonlinear enhancement. J. Atmos. Sci., 58, 24852501, doi:10.1175/1520-0469(2001)058<2485:TDOBLJ>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knupp, K. R., J. Walters, and M. Biggerstaff, 2006: Doppler profiler and radar observations of boundary layer variability during the landfall of Tropical Storm Gabrielle. J. Atmos. Sci., 63, 234251, doi:10.1175/JAS3608.1.

    • Search Google Scholar
    • Export Citation
  • Kosiba, K. A., and J. Wurman, 2014: Finescale dual-Doppler analysis of hurricane boundary layer structures in Hurricane Frances (2004) at landfall. Mon. Wea. Rev., 142, 18741891, doi:10.1175/MWR-D-13-00178.1.

    • Search Google Scholar
    • Export Citation
  • Kosiba, K. A., J. Wurman, F. J. Masters, and P. Robinson, 2013: Mapping of near-surface winds in Hurricane Rita using finescale radar, anemometer, and land-use data. Mon. Wea. Rev., 141, 43374349, doi:10.1175/MWR-D-12-00350.1.

    • Search Google Scholar
    • Export Citation
  • Krayer, W. R., and R. D. Marshall, 1992: Gust factors applied to hurricane winds. Bull. Amer. Meteor. Soc., 73, 613617, doi:10.1175/1520-0477(1992)073<0613:GFATHW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Krupar, R. J., III, 2015: Improving surface wind estimates in tropical cyclones using WSR-88D derived wind profiles. Ph.D. dissertation, Texas Tech University, 200 pp. [Available online at https://ttu-ir.tdl.org/ttu-ir/bitstream/handle/2346/63660/KRUPAR-DISSERTATION-2015.pdf?sequence=1&isAllowed=y.]

  • Lopez, C., F. J. Masters, and K. Friedrich, 2011: Capture and characterization of wind-driven rain during tropical cyclones and supercell thunderstorms. Proc. 13th Int. Conf. on Wind Engineering, Amsterdam, Netherlands, International Association for Wind Engineering, 4 pp. [Available online at http://atoc.colorado.edu/~friedrik/PUBLICATIONS/2011_ICWE_Lopez.pdf.]

  • Lorsolo, S., J. L. Schroeder, P. Dodge, and F. D. Marks, 2008: An observational study of hurricane boundary layer small-scale coherent structures. Mon. Wea. Rev., 136, 28712893, doi:10.1175/2008MWR2273.1.

    • Search Google Scholar
    • Export Citation
  • Mahrt, L., D. Vickers, J. Sun, N. O. Jensen, H. Jørgensen, E. Pardyjak, and H. Fernando, 2001: Determination of the surface drag coefficient. Bound.-Layer Meteor., 99, 249276, doi:10.1023/A:1018915228170.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., 1985: Evolution of the structure of precipitation in Hurricane Allen (1980). Mon. Wea. Rev., 113, 909930, doi:10.1175/1520-0493(1985)113<0909:EOTSOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., R. A. Houze Jr., and J. F. Gamache, 1992: Dual-aircraft investigation of the inner core of Hurricane Norbert. Part I: Kinematic structure. J. Atmos. Sci., 49, 919942, doi:10.1175/1520-0469(1992)049<0919:DAIOTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marks, F. D., P. G. Black, M. T. Montgomery, and R. W. Burpee, 2008: Structure of the eye and eyewall of Hurricane Hugo (1989). Mon. Wea. Rev., 136, 12371259, doi:10.1175/2007MWR2073.1.

    • Search Google Scholar
    • Export Citation
  • Masters, F., F. Tieleman, and J.-A. Balderrama, 2010: Surface wind measurements in three Gulf Coast hurricanes of 2005. J. Wind Eng. Ind. Aerodyn., 98, 533547, doi:10.1016/j.jweia.2010.04.003.

    • Search Google Scholar
    • Export Citation
  • Miller, C., J.-A. Balderrama, and F. Masters, 2015: Aspects of observed gust factors in landfalling tropical cyclones: Gust components, terrain, and upstream fetch effects. Bound.-Layer Meteor., 155, 129155, doi:10.1007/s10546-014-9989-0.

    • Search Google Scholar
    • Export Citation
  • Molinari, J., J. Frank, and D. Vollaro, 2013: Convective bursts, downdraft cooling, and boundary layer recovery in a sheared tropical storm. Mon. Wea. Rev., 141, 10481060, doi:10.1175/MWR-D-12-00135.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, I., S. Businger, F. D. Marks, P. Dodge, and J. A. Businger, 2005: An observational case for the prevalence of roll vortices in the hurricane boundary layer. J. Atmos. Sci., 62, 26622673, doi:10.1175/JAS3508.1.

    • Search Google Scholar
    • Export Citation
  • Paulsen, B. M., and J. L. Schroeder, 2005: An examination of tropical and extratropical gust factors and the associated wind speed histograms. J. Appl. Meteor., 44, 270280, doi:10.1175/JAM2199.1.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., 1990: Boundary layer structure and dynamics in outer hurricane rainbands. Part II: Downdraft modification and mixed layer recovery. Mon. Wea. Rev., 118, 918938, doi:10.1175/1520-0493(1990)118<0918:BLSADI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. Dodge, and M. L. Black, 1991: The landfall of Hurricane Hugo in the Carolinas: Surface wind distribution. Wea. Forecasting, 6, 379399, doi:10.1175/1520-0434(1991)006<0379:TLOHHI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., S. H. Houston, and T. A. Reinhold, 1996: Hurricane Andrew’s landfall in south Florida. Part I: Standardizing measurements for documentation of surface wind fields. Wea. Forecasting, 11, 304327, doi:10.1175/1520-0434(1996)011<0304:HALISF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., S. H. Houston, L. R. Amat, and N. Morisseau-Leroy, 1998: The HRD real-time hurricane wind analysis system. J. Wind Eng. Ind. Aerodyn., 77–78, 5364, doi:10.1016/S0167-6105(98)00131-7.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., P. J. Vickery, and T. A. Reinhold, 2003: Reduced drag coefficient for high wind speeds in tropical cyclones. Nature, 422, 279283, doi:10.1038/nature01481.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., D. Bowman, D. Gilhousen, S. Murillo, N. Carrasco, and R. St. Fleur, 2004: Tropical cyclone winds at landfall: The ASOS–C-MAN wind exposure documentation project. Bull. Amer. Meteor. Soc., 85, 845851, doi:10.1175/BAMS-85-6-845.

    • Search Google Scholar
    • Export Citation
  • Powell, M. D., and Coauthors, 2010: Reconstruction of Hurricane Katrina’s wind fields for storm surge and wave hindcasting. Ocean Eng., 37, 2636, doi:10.1016/j.oceaneng.2009.08.014.

    • Search Google Scholar
    • Export Citation
  • Schroeder, J. L., and D. A. Smith, 2003: Hurricane Bonnie wind flow characteristics as determined from WEMITE. J. Wind Eng. Ind. Aerodyn., 91, 767789, doi:10.1016/S0167-6105(02)00475-0.

    • Search Google Scholar
    • Export Citation
  • Schroeder, J. L., B. P. Edwards, and I. M. Giammanco, 2009: Observed tropical cyclone wind flow characteristics. Wind Struct., 12, 349381, doi:10.12989/was.2009.12.4.349.

    • Search Google Scholar
    • Export Citation
  • Schwendike, J., and J. D. Kepert, 2008: The boundary layer winds in Hurricanes Danielle (1998) and Isabel (2003). Mon. Wea. Rev., 136, 31683192, doi:10.1175/2007MWR2296.1.

    • Search Google Scholar
    • Export Citation
  • Skwira, G. D., J. L. Schroeder, and R. E. Peterson, 2005: Surface observations of landfalling hurricane rainbands. Mon. Wea. Rev., 133, 454465, doi:10.1175/MWR-2866.1.

    • Search Google Scholar
    • Export Citation
  • Sparks, P. R., and Z. Huang, 2001: Gust factors and surface-to-gradient wind-speed ratios in tropical cyclones. J. Wind Eng. Ind. Aerodyn., 89, 10471058, doi:10.1016/S0167-6105(01)00098-8.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Kluwer Academic, 666 pp.

  • Suomi, I., S.-E. Gryning, R. Floors, T. Vihma, and C. Fortelius, 2015: On the vertical structure of wind gusts. Quart. J. Roy. Meteor. Soc., 141, 16581670, doi:10.1002/qj.2468.

    • Search Google Scholar
    • Export Citation
  • Vickery, P. J., and P. Skerlj, 2005: Hurricane gust factors revisited. J. Struct. Eng., 131, 825832, doi:10.1061/(ASCE)0733-9445(2005)131:5(825).

    • Search Google Scholar
    • Export Citation
  • Weiss, C. C., and J. L. Schroeder, 2008: StickNet: A new portable, rapidly deployable surface observation system. Bull. Amer. Meteor. Soc., 89, 15021503.

    • Search Google Scholar
    • Export Citation
  • Wieringa, J., 1992: Updating the Davenport roughness classification. J. Wind Eng. Ind. Aerodyn., 41, 357368, doi:10.1016/0167-6105(92)90434-C.

    • Search Google Scholar
    • Export Citation
  • Willoughby, H. E., and M. B. Chelmow, 1982: Objective determination of hurricane tracks from aircraft observations. Mon. Wea. Rev., 110, 12981305, doi:10.1175/1520-0493(1982)110<1298:ODOHTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., and J. Winslow, 1998: Intense sub-kilometer-scale boundary layer rolls observed in Hurricane Fran. Science, 280, 555557, doi:10.1126/science.280.5363.555.

    • Search Google Scholar
    • Export Citation
  • Yu, B., A. G. Chowdhury, and F. J. Masters, 2008: Hurricane wind power spectra, cospectra, and integral length scales. Bound.-Layer Meteor., 129, 411430, doi:10.1007/s10546-008-9316-8.

    • Search Google Scholar
    • Export Citation
  • Yuter, S. E., and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part I: Spatial distribution of updrafts, downdrafts, and precipitation. Mon. Wea. Rev., 123, 19211940, doi:10.1175/1520-0493(1995)123<1921:TDKAME>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., W. M. Drennan, P. G. Black, and J. R. French, 2009: Turbulence structure of the hurricane boundary layer between the outer rainbands. J. Atmos. Sci., 66, 24552467, doi:10.1175/2009JAS2954.1.

    • Search Google Scholar
    • Export Citation
  • Zhang, J. A., R. F. Rogers, D. S. Nolan, and F. D. Marks, 2011: On the characteristic height scales of the hurricane boundary layer. Mon. Wea. Rev., 139, 25232535, doi:10.1175/MWR-D-10-05017.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 441 188 16
PDF Downloads 358 171 17