A Comparison of X-Band Polarization Parameters with In Situ Microphysical Measurements in the Comma Head of Two Winter Cyclones

Joseph A. Finlon Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Joseph A. Finlon in
Current site
Google Scholar
PubMed
Close
,
Greg M. McFarquhar Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Greg M. McFarquhar in
Current site
Google Scholar
PubMed
Close
,
Robert M. Rauber Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Robert M. Rauber in
Current site
Google Scholar
PubMed
Close
,
David M. Plummer Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by David M. Plummer in
Current site
Google Scholar
PubMed
Close
,
Brian F. Jewett Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

Search for other papers by Brian F. Jewett in
Current site
Google Scholar
PubMed
Close
,
David Leon Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming

Search for other papers by David Leon in
Current site
Google Scholar
PubMed
Close
, and
Kevin R. Knupp Department of Atmospheric Science, University of Alabama in Huntsville, Huntsville, Alabama

Search for other papers by Kevin R. Knupp in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Since the advent of dual-polarization radar, methods of classifying hydrometeors by type from measured polarization variables have been developed. The deterministic approach of existing hydrometeor classification algorithms of assigning only one dominant habit to each radar sample volume does not properly consider the distribution of habits present in that volume, however. During the Profiling of Winter Storms field campaign, the “NSF/NCAR C-130” aircraft, equipped with in situ microphysical probes, made multiple passes through the comma heads of two cyclones as the Mobile Alabama X-band dual-polarization radar performed range–height indicator scans in the same plane as the C-130 flight track. On 14–15 February and 21–22 February 2010, 579 and 202 coincident data points, respectively, were identified when the plane was within 10 s (~1 km) of a radar gate. For all particles that occurred for times within different binned intervals of radar reflectivity ZHH and of differential reflectivity ZDR, the reflectivity-weighted contribution of each habit and the frequency distributions of axis ratio and sphericity were determined. This permitted the determination of habits that dominate particular ZHH and ZDR intervals; only 40% of the ZHHZDR bins were found to have a habit that contributes over 50% to the reflectivity in that bin. Of these bins, only 12% had a habit that contributes over 75% to the reflectivity. These findings show the general lack of dominance of a given habit for a particular ZHH and ZDR and suggest that determining the probability of specific habits in radar volumes may be more suitable than the deterministic methods currently used.

Current affiliation: Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming.

Corresponding author address: Joseph Finlon, Dept. of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory St., Urbana, IL 61801. E-mail: finlon2@illinois.edu

Abstract

Since the advent of dual-polarization radar, methods of classifying hydrometeors by type from measured polarization variables have been developed. The deterministic approach of existing hydrometeor classification algorithms of assigning only one dominant habit to each radar sample volume does not properly consider the distribution of habits present in that volume, however. During the Profiling of Winter Storms field campaign, the “NSF/NCAR C-130” aircraft, equipped with in situ microphysical probes, made multiple passes through the comma heads of two cyclones as the Mobile Alabama X-band dual-polarization radar performed range–height indicator scans in the same plane as the C-130 flight track. On 14–15 February and 21–22 February 2010, 579 and 202 coincident data points, respectively, were identified when the plane was within 10 s (~1 km) of a radar gate. For all particles that occurred for times within different binned intervals of radar reflectivity ZHH and of differential reflectivity ZDR, the reflectivity-weighted contribution of each habit and the frequency distributions of axis ratio and sphericity were determined. This permitted the determination of habits that dominate particular ZHH and ZDR intervals; only 40% of the ZHHZDR bins were found to have a habit that contributes over 50% to the reflectivity in that bin. Of these bins, only 12% had a habit that contributes over 75% to the reflectivity. These findings show the general lack of dominance of a given habit for a particular ZHH and ZDR and suggest that determining the probability of specific habits in radar volumes may be more suitable than the deterministic methods currently used.

Current affiliation: Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming.

Corresponding author address: Joseph Finlon, Dept. of Atmospheric Sciences, University of Illinois at Urbana–Champaign, 105 S. Gregory St., Urbana, IL 61801. E-mail: finlon2@illinois.edu
Save
  • Alcoba, M., M. Gosset, M. Kacou, F. Cazenave, and E. Fontaine, 2016: Characterization of hydrometeors in Sahelian convective systems with an X-band radar and comparison with in situ measurements. Part II: A simple brightband method to infer the density of icy hydrometeors. J. Appl. Meteor. Climatol., 55, 251263, doi:10.1175/JAMC-D-15-0014.1.

    • Search Google Scholar
    • Export Citation
  • Al-Sakka, H., A.-A. Boumahmoud, B. Fradon, S. J. Frasier, and P. Tabary, 2013: A new fuzzy logic hydrometeor classification scheme applied to the French X-, C-, and S-band polarimetric radars. J. Appl. Meteor. Climatol., 52, 23282344, doi:10.1175/JAMC-D-12-0236.1.

    • Search Google Scholar
    • Export Citation
  • Aydin, K., T. A. Seliga, and V. Balaji, 1986: Remote sensing of hail with a dual linear polarization radar. J. Climate Appl. Meteor., 25, 14751484, doi:10.1175/1520-0450(1986)025<1475:RSOHWA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Baker, B., and R. P. Lawson, 2006: Improvement in determination of ice water content from two-dimensional particle imagery. Part I: Image-to-mass relationships. J. Appl. Meteor. Climatol., 45, 12821290, doi:10.1175/JAM2398.1.

    • Search Google Scholar
    • Export Citation
  • Barthazy, E., S. Göke, J. Vivekanandan, and S. M. Ellis, 2001: Detection of snow and ice crystals using polarization radar measurements: Comparison between ground-based in situ and S-Pol observations. Atmos. Res., 59–60, 137162, doi:10.1016/S0169-8095(01)00114-4.

    • Search Google Scholar
    • Export Citation
  • Bechini, R., and V. Chandrasekar, 2015: A semisupervised robust hydrometeor classification method for dual-polarization radar applications. J. Atmos. Oceanic Technol., 32, 2247, doi:10.1175/JTECH-D-14-00097.1.

    • Search Google Scholar
    • Export Citation
  • Besic, N., J. Figueras i Ventura, J. Grazioli, M. Gabella, U. Germann, and A. Berne, 2016: Hydrometeor classification through statistical clustering of polarimetric radar measurements: A semi-supervised approach. Atmos. Meas. Tech., 9, 44254445, doi:10.5194/amt-2016-105.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

  • Bringi, V. N., J. Vivekanandan, and J. D. Tuttle, 1986: Multiparameter radar measurements in Colorado convective storms. Part II: Hail detection studies. J. Atmos. Sci., 43, 25642577, doi:10.1175/1520-0469(1986)043<2564:MRMICC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., V. Chandrasekar, N. Balakrishnan, and D. S. Zrnić, 1990: An examination of propagation effects in rainfall on radar measurements at microwave frequencies. J. Atmos. Oceanic Technol., 7, 829840, doi:10.1175/1520-0426(1990)007<0829:AEOPEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., T. D. Keenan, and V. Chandrasekar, 2001: Correcting C-band radar reflectivity and differential reflectivity data for rain attenuation: A self-consistent method with constraints. IEEE Trans. Geosci. Remote Sens., 39, 19061915, doi:10.1109/36.951081.

    • Search Google Scholar
    • Export Citation
  • Cazenave, F., M. Gosset, M. Kacou, M. Alcoba, E. Fontaine, C. Duroure, and B. Dolan, 2016: Characterization of hydrometeors in Sahelian convective systems with an X-band radar and comparison with in situ measurements. Part I: Sensitivity of polarimetric radar particle identification retrieval and case study evaluation. J. Appl. Meteor. Climatol., 55, 231249, doi:10.1175/JAMC-D-15-0013.1.

    • Search Google Scholar
    • Export Citation
  • Chandrasekar, V., S. Lim, and E. Gorgucci, 2006: Simulation of X-band rainfall observations from S-band radar data. J. Atmos. Oceanic Technol., 23, 11951205, doi:10.1175/JTECH1909.1.

    • Search Google Scholar
    • Export Citation
  • Chang, W.-Y., J. Vivekanandan, and T.-C. C. Wang, 2014: Estimation of X-band polarimetric radar attenuation and measurement uncertainty using a variational method. J. Appl. Meteor. Climatol., 53, 10991119, doi:10.1175/JAMC-D-13-0191.1.

    • Search Google Scholar
    • Export Citation
  • Cohen, J., 1988: Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Routledge, 400 pp.

  • Delrieu, G., H. Andrieu, and J. D. Creutin, 2000: Quantification of path-integrated attenuation for X- and C-band weather radar systems operating in Mediterranean heavy rainfall. J. Appl. Meteor., 39, 840850, doi:10.1175/1520-0450(2000)039<0840:QOPIAF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Diederich, M., A. Ryzhkov, C. Simmer, P. Zhang, and S. Trömel, 2015a: Use of specific attenuation for rainfall measurement at X-band radar wavelengths. Part I: Radar calibration and partial beam blockage estimation. J. Hydrometeor., 16, 487502, doi:10.1175/JHM-D-14-0066.1.

    • Search Google Scholar
    • Export Citation
  • Diederich, M., A. Ryzhkov, C. Simmer, P. Zhang, and S. Trömel, 2015b: Use of specific attenuation for rainfall measurement at X-band radar wavelengths. Part II: Rainfall estimates and comparison with rain gauges. J. Hydrometeor., 16, 503516, doi:10.1175/JHM-D-14-0067.1.

    • Search Google Scholar
    • Export Citation
  • Dolan, B., and S. A. Rutledge, 2009: A theory-based hydrometeor identification algorithm for X-band polarimetric radars. J. Atmos. Oceanic Technol., 26, 20712088, doi:10.1175/2009JTECHA1208.1.

    • Search Google Scholar
    • Export Citation
  • El-Magd, A., V. Chandrasekar, V. N. Bringi, and W. Strapp, 2000: Multiparameter radar and in situ aircraft observation of graupel and hail. IEEE Trans. Geosci. Remote Sens., 38, 570578, doi:10.1109/36.823951.

    • Search Google Scholar
    • Export Citation
  • Field, P. R., 1999: Aircraft observations of ice crystal evolution in an altostratus cloud. J. Atmos. Sci., 56, 19251941, doi:10.1175/1520-0469(1999)056<1925:AOOICE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fujiyoshi, Y., and G. Wakahama, 1985: On snow particles comprising an aggregate. J. Atmos. Sci., 42, 16671674, doi:10.1175/1520-0469(1985)042<1667:OSPCAA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gans, R., 1912: Über die Form ultramikroskopischer Goldteilchen (On the shape of ultramicroscopic gold particles). Ann. Phys., 342, 881900, doi:10.1002/andp.19123420503.

    • Search Google Scholar
    • Export Citation
  • Goddard, J. W. F., J. Tan, and M. Thurai, 1994: Technique for calibration of meteorological radars using differential phase. Electron. Lett., 30, 166167, doi:10.1049/el:19940119.

    • Search Google Scholar
    • Export Citation
  • Gorgucci, E., and V. Chandrasekar, 2005: Evaluation of attenuation correction methodology for dual-polarization radars: Application to X-band systems. J. Atmos. Oceanic Technol., 22, 11951206, doi:10.1175/JTECH1763.1.

    • Search Google Scholar
    • Export Citation
  • Hall, M. P., S. M. Cherry, and J. W. F. Goddard, 1980: Use of dual-polarisation radar to measure rainfall rates and distinguish rain from ice particles. Proc. IEEE 1980 Int. Radar Conf., Arlington, VA, Institute of Electrical and Electronics Engineers, 83–87.

  • Hall, M. P., J. W. F. Goddard, and S. M. Cherry, 1984: Identification of hydrometeors and other targets by dual-polarization radar. Radio Sci., 19, 132140, doi:10.1029/RS019i001p00132.

    • Search Google Scholar
    • Export Citation
  • Heymsfield, A. J., and D. Baumgardner, 1985: Summary of a workshop on processing 2D probe data. Bull. Amer. Meteor. Soc., 66, 437440.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., S. Chang, and J. D. Locatelli, 1974: The dimensions and aggregation of ice crystals in natural clouds. J. Geophys. Res., 79, 21992206, doi:10.1029/JC079i015p02199.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., M. P. Mittermaier, and A. J. Illingworth, 2006: The retrieval of ice water content from radar reflectivity factor and temperature and its use in evaluating a mesoscale model. J. Appl. Meteor. Climatol., 45, 301317, doi:10.1175/JAM2340.1.

    • Search Google Scholar
    • Export Citation
  • Hogan, R. J., L. Tian, P. R. A. Brown, C. D. Westbrook, A. J. Heymsfield, and J. D. Eastment, 2012: Radar scattering from ice aggregates using the horizontally aligned oblate spheroid approximation. J. Appl. Meteor. Climatol., 51, 655671, doi:10.1175/JAMC-D-11-074.1.

    • Search Google Scholar
    • Export Citation
  • Höller, H., M. Hagen, P. F. Meischner, V. N. Bringi, and J. Hubbert, 1994: Life cycle and precipitation formation in a hybrid-type hailstorm revealed by polarimetric and Doppler radar measurements. J. Atmos. Sci., 51, 25002522, doi:10.1175/1520-0469(1994)051<2500:LCAPFI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Holroyd, E. W., III, 1987: Some techniques and uses of 2D-C habit classification software for snow particles. J. Atmos. Oceanic Technol., 4, 498511, doi:10.1175/1520-0426(1987)004<0498:STAUOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jackson, R. C., and G. M. McFarquhar, 2014: An assessment of the impact of antishattering tips and artifact removal techniques on bulk cloud ice microphysical and optical properties measured by the 2D cloud probe. J. Atmos. Oceanic Technol., 31, 21312144, doi:10.1175/JTECH-D-14-00018.1.

    • Search Google Scholar
    • Export Citation
  • Jackson, R. C., and Coauthors, 2012: The dependence of ice microphysics on aerosol concentration in arctic mixed-phase stratus clouds during ISDAC and M-PACE. J. Geophys. Res., 117, D15207, doi:10.1029/2012JD017668.

    • Search Google Scholar
    • Export Citation
  • Jackson, R. C., G. M. McFarquhar, J. Stith, M. Beals, R. A. Shaw, J. Jensen, J. Fugal, and A. Korolev, 2014: An assessment of the impact of antishattering tips and artifact removal techniques on cloud ice size distributions measured by the 2D cloud probe. J. Atmos. Oceanic Technol., 31, 25672590, doi:10.1175/JTECH-D-13-00239.1.

    • Search Google Scholar
    • Export Citation
  • Keeler, J. M., B. F. Jewett, R. M. Rauber, G. M. McFarquhar, R. M. Rasmussen, L. Xue, C. Liu, and G. Thompson, 2016: Dynamics of cloud-top generating cells in winter cyclones. Part I: Idealized simulations in the context of field observations. J. Atmos. Sci., 73, 15071527, doi:10.1175/JAS-D-15-0126.1.

    • Search Google Scholar
    • Export Citation
  • King, W. D., 1985: Air flow and particle trajectories around aircraft fuselages. Part III: Extensions to particles of arbitrary shape. J. Atmos. Oceanic Technol., 2, 539547, doi:10.1175/1520-0426(1985)002<0539:AFAPTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • King, W. D., 1986: Air flow and particle trajectories around aircraft fuselages. IV: Orientation of ice crystals. J. Atmos. Oceanic Technol., 3, 433439, doi:10.1175/1520-0426(1986)003<0433:AFAPTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Knupp, K. R., and Coauthors, 2014: Meteorological overview of the devastating 27 April 2011 tornado outbreak. Bull. Amer. Meteor. Soc., 95, 10411062, doi:10.1175/BAMS-D-11-00229.1.

    • Search Google Scholar
    • Export Citation
  • Kollias, P., J. Rémillard, E. Luke, and W. Szyrmer, 2011: Cloud radar Doppler spectra in drizzling stratiform clouds: 1. Forward modeling and remote sensing applications. J. Geophys. Res., 116, D13201, doi:10.1029/2010JD015237.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., G. A. Isaac, and J. Hallett, 1999: Ice particle habits in arctic clouds. Geophys. Res. Lett., 26, 12991302, doi:10.1029/1999GL900232.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., G. A. Isaac, and J. Hallett, 2000: Ice particle habits in stratiform clouds. Quart. J. Roy. Meteor. Soc., 126, 28732902, doi:10.1002/qj.49712656913.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., E. F. Emery, J. W. Strapp, S. G. Cober, G. A. Isaac, M. Wasey, and D. Marcotte, 2011: Small ice particles in tropospheric clouds: Fact or artifact? Airborne icing instrumentation evaluation experiment. Bull. Amer. Meteor. Soc., 92, 967973, doi:10.1175/2010BAMS3141.1.

    • Search Google Scholar
    • Export Citation
  • Korolev, A. V., A. Shashkov, and H. Barker, 2014: Calibrations and performance of the airborne cloud extinction probe. J. Atmos. Oceanic Technol., 31, 326345, doi:10.1175/JTECH-D-13-00020.1.

    • Search Google Scholar
    • Export Citation
  • Kouketsu, T., and Coauthors, 2015: A hydrometeor classification method for X-band polarimetric radar: Construction and validation focusing on solid hydrometeors under moist environments. J. Atmos. Oceanic Technol., 32, 20522074, doi:10.1175/JTECH-D-14-00124.1.

    • Search Google Scholar
    • Export Citation
  • Lasher-Trapp, S., D. C. Leon, P. J. DeMott, C. M. Villanueva-Birriel, A. V. Johnson, D. H. Moser, C. S. Tully, and W. Wu, 2016: A multisensor investigation of rime splintering in tropical maritime cumuli. J. Atmos. Sci., 73, 25472564, doi:10.1175/JAS-D-15-0285.1.

    • Search Google Scholar
    • Export Citation
  • Lim, S., V. Chandrasekar, and V. N. Bringi, 2005: Hydrometeor classification system using dual-polarization radar measurements: Model improvements and in situ verification. IEEE Trans. Geosci. Remote Sens., 43, 792801, doi:10.1109/TGRS.2004.843077.

    • Search Google Scholar
    • Export Citation
  • Lim, S., R. Cifelli, V. Chandrasekar, and S. Y. Matrosov, 2013: Precipitation classification and quantification using X-band dual-polarization weather radar: Application in the Hydrometeorology Testbed. J. Atmos. Oceanic Technol., 30, 21082120, doi:10.1175/JTECH-D-12-00123.1.

    • Search Google Scholar
    • Export Citation
  • Liu, H., and V. Chandrasekar, 2000: Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Oceanic Technol., 17, 140164, doi:10.1175/1520-0426(2000)017<0140:COHBOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Magono, C., 1954: On the falling velocity of solid precipitation elements. Science Reports of the Yokohama National University, Section I, No. 3, 33–40. [Available online at http://ci.nii.ac.jp/naid/110006151417.]

  • McFarquhar, G. M., and A. J. Heymsfield, 1996: Microphysical characteristics of three anvils sampled during the Central Equatorial Pacific Experiment. J. Atmos. Sci., 53, 24012423, doi:10.1175/1520-0469(1996)053<2401:MCOTAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., P. Yang, A. Macke, and A. J. Baran, 2002: A new parameterization of single scattering solar radiative properties for tropical anvils using observed ice crystal size and shape distributions. J. Atmos. Sci., 59, 24582478, doi:10.1175/1520-0469(2002)059<2458:ANPOSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., M. S. Timlin, T. Nousiainen, and P. Yang, 2005: A new representation of the single-scattering properties for mid-latitude clouds and its impacts. Proc. 15th ARM Science Team Meeting, Daytona Beach, FL, ARM Program, 10 pp. [Available online at https://www.arm.gov/publications/proceedings/conf15/extended_abs/mcfarquhar_gm2.pdf.]

  • McFarquhar, G. M., M. S. Timlin, R. M. Rauber, B. F. Jewett, J. A. Grim, and D. P. Jorgensen, 2007: Vertical variability of cloud hydrometeors in the stratiform region of mesoscale convective systems and bow echoes. Mon. Wea. Rev., 135, 34053428, doi:10.1175/MWR3444.1.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., J. Um, and R. Jackson, 2013: Small cloud particle shapes in mixed-phase clouds. J. Appl. Meteor. Climatol., 52, 12771293, doi:10.1175/JAMC-D-12-0114.1.

    • Search Google Scholar
    • Export Citation
  • Melnikov, V., and J. M. Straka, 2013: Axis ratios and flutter angles of cloud ice particles: Retrievals from radar data. J. Atmos. Oceanic Technol., 30, 16911703, doi:10.1175/JTECH-D-12-00212.1.

    • Search Google Scholar
    • Export Citation
  • Mullins, S., and K. R. Knupp, 2009: Observations of Hurricane Ike (2008) from the mobile Alabama X-band radar. 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., P11.6. [Available online at https://ams.confex.com/ams/34Radar/techprogram/paper_155607.htm.]

  • Ortega, K. L., J. M. Krause, and A. V. Ryzhkov, 2016: Polarimetric radar characteristics of melting hail. Part III: Validation of the algorithm for hail size discrimination. J. Appl. Meteor. Climatol., 55, 829848, doi:10.1175/JAMC-D-15-0203.1.

    • Search Google Scholar
    • Export Citation
  • Park, H. S., A. V. Ryzhkov, D. S. Zrnić, and K.-E. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, doi:10.1175/2008WAF2222205.1.

    • Search Google Scholar
    • Export Citation
  • Park, S.-G., V. N. Bringi, V. Chandrasekar, M. Maki, and K. Iwanami, 2005: Correction of radar reflectivity and differential reflectivity for rain attenuation at X band. Part I: Theoretical and empirical basis. J. Atmos. Oceanic Technol., 22, 16211632, doi:10.1175/JTECH1803.1.

    • Search Google Scholar
    • Export Citation
  • Picca, J. C., D. M. Schultz, B. A. Colle, S. Ganetis, D. R. Novak, and M. J. Sienkiewicz, 2014: The value of dual-polarization radar in diagnosing the complex microphysical evolution of an intense snowband. Bull. Amer. Meteor. Soc., 95, 18251834, doi:10.1175/BAMS-D-13-00258.1.

    • Search Google Scholar
    • Export Citation
  • Plummer, D. M., S. Göke, R. M. Rauber, and L. Di Girolamo, 2010: Discrimination of mixed- versus ice-phase clouds using dual-polarization radar with application to detection of aircraft icing regions. J. Appl. Meteor. Climatol., 49, 920936, doi:10.1175/2009JAMC2267.1.

    • Search Google Scholar
    • Export Citation
  • Plummer, D. M., G. M. McFarquhar, R. M. Rauber, B. F. Jewett, and D. C. Leon, 2014: Structure and statistical analysis of the microphysical properties of generating cells in the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 41814203, doi:10.1175/JAS-D-14-0100.1.

    • Search Google Scholar
    • Export Citation
  • Plummer, D. M., G. M. McFarquhar, R. M. Rauber, B. F. Jewett, and D. C. Leon, 2015: Microphysical properties of convectively generated fall streaks within the stratiform comma head region of continental winter cyclones. J. Atmos. Sci., 72, 24652483, doi:10.1175/JAS-D-14-0354.1.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. Kluwer Academic Press, 954 pp., doi:10.1007/978-0-306-48100-0.

  • Rauber, R. M., and Coauthors, 2014: Stability and charging characteristics of the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 15591582, doi:10.1175/JAS-D-13-0253.1.

    • Search Google Scholar
    • Export Citation
  • Rosenow, A. A., D. M. Plummer, R. M. Rauber, G. M. McFarquhar, B. F. Jewett, and D. Leon, 2014: Vertical velocity and physical structure of generating cells and convection in the comma head region of continental winter cyclones. J. Atmos. Sci., 71, 15381558, doi:10.1175/JAS-D-13-0249.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., T. J. Schuur, D. W. Burgess, P. L. Heinselman, S. E. Giangrande, and D. S. Zrnic, 2005: The Joint Polarization Experiment: Polarimetric rainfall measurements and hydrometeor classification. Bull. Amer. Meteor. Soc., 86, 809824, doi:10.1175/BAMS-86-6-809.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., M. Diederich, P. Zhang, and C. Simmer, 2014: Potential utilization of specific attenuation for rainfall estimation, mitigation of partial beam blockage, and radar networking. J. Atmos. Oceanic Technol., 31, 599619, doi:10.1175/JTECH-D-13-00038.1.

    • Search Google Scholar
    • Export Citation
  • Schuur, T. J., H.-S. Park, A. V. Ryzhkov, and H. D. Reeves, 2012: Classification of precipitation types during transitional winter weather using the RUC model and polarimetric radar retrievals. J. Appl. Meteor. Climatol., 51, 763779, doi:10.1175/JAMC-D-11-091.1.

    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., and V. N. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15, 6976, doi:10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., H. B. Bluestein, G. Zhang, and S. J. Frasier, 2010: Attenuation correction and hydrometeor classification of high-resolution, X-band, dual-polarized mobile radar measurements in severe convective storms. J. Atmos. Oceanic Technol., 27, 19792001, doi:10.1175/2010JTECHA1356.1.

    • Search Google Scholar
    • Export Citation
  • Stoelinga, M. T., J. D. Locatelli, and C. P. Woods, 2007: The occurrence of “irregular” ice particles in stratiform clouds. J. Atmos. Sci., 64, 27402750, doi:10.1175/JAS3962.1.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., and D. S. Zrnić, 1993: An algorithm to deduce hydrometeor types and contents from multi-parameter radar data. Proc. 26th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 513–515.

  • Straka, J. M., D. S. Zrnić, and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 13411372, doi:10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Tang, L., J. Zhang, and Y. Wang, 2013: Uncertainty analyses of the operational WSR-88D hydrometeor classification project. 36th Conf. Radar Meteorology, Breckenridge, CO, Amer. Meteor. Soc., 14B.5. [Available online at https://ams.confex.com/ams/36Radar/webprogram/Manuscript/Paper228665/14B5_extend.pdf.]

  • Testud, J., E. Le Bouar, E. Obligis, and M. Ali-Mehenni, 2000: The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Oceanic Technol., 17, 332356, doi:10.1175/1520-0426(2000)017<0332:TRPAAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, E. J., S. A. Rutledge, B. Dolan, V. Chandrasekar, and B. L. Cheong, 2014: A dual-polarization radar hydrometeor classification algorithm for winter precipitation. J. Atmos. Oceanic Technol., 31, 14571481, doi:10.1175/JTECH-D-13-00119.1.

    • Search Google Scholar
    • Export Citation
  • Tyynelä, J., J. Leinonen, D. Moisseev, and T. Nousiainen, 2011: Radar backscattering from snowflakes: Comparison of fractal, aggregate, and soft spheroid models. J. Atmos. Oceanic Technol., 28, 13651372, doi:10.1175/JTECH-D-11-00004.1.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., S. M. Ellis, R. Oye, D. S. Zrnic, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388, doi:10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wen, G., A. Protat, P. T. May, X. Wang, and W. Moran, 2015: A cluster-based method for hydrometeor classification using polarimetric variables. Part I: Interpretation and analysis. J. Atmos. Oceanic Technol., 32, 13201340, doi:10.1175/JTECH-D-13-00178.1.

    • Search Google Scholar
    • Export Citation
  • Wolde, M., D. Hudak, B. Currie, S. G. Cober, P. Rodriguez, I. Zawadzki, G. A. Isaac, and D. Marcotte, 2003: Radar signatures of winter clouds from aircraft in-situ data and ground-based radar observations. 31st Int. Conf on. Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 13.3. [Available online at https://ams.confex.com/ams/pdfpapers/64348.pdf.]

  • Wu, W., and G. M. McFarquhar, 2016: On the impacts of different definitions of maximum dimension for nonspherical particles recorded by 2D imaging probes. J. Atmos. Oceanic Technol., 33, 10571072, doi:10.1175/JTECH-D-15-0177.1.

    • Search Google Scholar
    • Export Citation
  • Zong, R., L. Liu, and Y. Yin, 2013: Relationship between cloud characteristics and radar reflectivity based on aircraft and cloud radar co-observations. Adv. Atmos. Sci., 30, 12751286, doi:10.1007/s00376-013-2090-7.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., A. V. Ryzhkov, J. Straka, Y. Liu, and J. Vivekanandan, 2000: Sensitivity of an automatic procedure for hydrometeor classification. Proc. IEEE Int. Geoscience and Remote Sensing Symp. 2000, Honolulu, HI, Institute of Electrical and Electronics Engineers, 1574–1576, doi:10.1109/IGARSS.2000.857276.

  • Zrnić, D. S., A. V. Ryzhkov, J. Straka, Y. Liu, and J. Vivekanandan, 2001: Testing a procedure for automatic classification of hydrometeor types. J. Atmos. Oceanic Technol., 18, 892913, doi:10.1175/1520-0426(2001)018<0892:TAPFAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 355 139 15
PDF Downloads 167 34 8