Characterization of the 14 June 2011 Norman, Oklahoma, Downburst through Dual-Polarization Radar Observations and Hydrometeor Classification

Vivek N. Mahale School of Meteorology, and Advanced Radar Research Center, and Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Search for other papers by Vivek N. Mahale in
Current site
Google Scholar
PubMed
Close
,
Guifu Zhang School of Meteorology, and Advanced Radar Research Center, and Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Search for other papers by Guifu Zhang in
Current site
Google Scholar
PubMed
Close
, and
Ming Xue School of Meteorology, and Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

Search for other papers by Ming Xue in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

On 14 June 2011, thunderstorms developed along a cold front in central Oklahoma in a thermodynamic environment that was conducive for downbursts. One of the thunderstorms produced a wet downburst in Norman, Oklahoma, that resulted in surface winds in excess of 35 m s−1 (>80 mi h−1) and hailstones in excess of 4 cm in diameter. Unique 1-min observations of the downburst were recorded by an Oklahoma Mesonet station. These observations indicated a 6.6-hPa pressure rise that was coincident with a rain rate of 213 mm h−1 at the center of the downburst. In this event, both the research KOUN (Norman) and operational KTLX (Oklahoma City, Oklahoma) Weather Surveillance Radar-1988 Doppler (WSR-88D) instruments were scanning this downburst and its parent storm at close range (<30 km). KOUN provided polarimetric radar data (PRD) while both radars provided limited dual-Doppler coverage. The evolution of the downburst is analyzed mostly through the use of reconstructed range–height indicators of the PRD. A hydrometeor classification algorithm (HCA) is applied to the PRD to gain further understanding of the microphysical evolution of the downburst. Through the analyses, it is seen that graupel aloft made a transition to a nearly all rain and hail mixture above the 0°C level. This large area of mixed rain and hail eventually descended to the ground, causing the downburst. In this study, the HCA analyses are utilized to develop a conceptual model that characterizes the hydrometeor evolution of the parent downburst storm.

Corresponding author e-mail: Vivek N. Mahale, vmahale@ou.edu

Abstract

On 14 June 2011, thunderstorms developed along a cold front in central Oklahoma in a thermodynamic environment that was conducive for downbursts. One of the thunderstorms produced a wet downburst in Norman, Oklahoma, that resulted in surface winds in excess of 35 m s−1 (>80 mi h−1) and hailstones in excess of 4 cm in diameter. Unique 1-min observations of the downburst were recorded by an Oklahoma Mesonet station. These observations indicated a 6.6-hPa pressure rise that was coincident with a rain rate of 213 mm h−1 at the center of the downburst. In this event, both the research KOUN (Norman) and operational KTLX (Oklahoma City, Oklahoma) Weather Surveillance Radar-1988 Doppler (WSR-88D) instruments were scanning this downburst and its parent storm at close range (<30 km). KOUN provided polarimetric radar data (PRD) while both radars provided limited dual-Doppler coverage. The evolution of the downburst is analyzed mostly through the use of reconstructed range–height indicators of the PRD. A hydrometeor classification algorithm (HCA) is applied to the PRD to gain further understanding of the microphysical evolution of the downburst. Through the analyses, it is seen that graupel aloft made a transition to a nearly all rain and hail mixture above the 0°C level. This large area of mixed rain and hail eventually descended to the ground, causing the downburst. In this study, the HCA analyses are utilized to develop a conceptual model that characterizes the hydrometeor evolution of the parent downburst storm.

Corresponding author e-mail: Vivek N. Mahale, vmahale@ou.edu
Save
  • Atkins, N. T., and R. M. Wakimoto, 1991: Wet microburst activity over the southeastern United States: Implications for forecasting. Wea. Forecasting, 6, 470482, doi:10.1175/1520-0434(1991)006<0470:WMAOTS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Atlas, D., C. W. Ulbrich, and C. R. Williams, 2004: Physical origin of a wet microburst: Observations and theory. J. Atmos. Sci., 61, 11861195, doi:10.1175/1520-0469(2004)061<1186:POOAWM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Brandes, E. A., and K. Ikeda, 2004: Freezing-level estimation with polarimetric radar. J. Appl. Meteor., 43, 15411553, doi:10.1175/JAM2155.1.

    • Search Google Scholar
    • Export Citation
  • Brock, F. V., K. C. Crawford, R. L. Elliott, G. W. Cuperus, S. J. Stadler, H. L. Johnson, and M. D. Eilts, 1995: The Oklahoma Mesonet: A technical overview. J. Atmos. Oceanic Technol., 12, 519, doi:10.1175/1520-0426(1995)012<0005:TOMATO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Emanuel, K. A., 1994: Atmospheric Convection. Oxford University Press, 580 pp.

  • Evans, J., and D. Turnbull, 1989: Development of an automated windshear detection system using Doppler weather radar. Proc. IEEE, 77, 16611673, doi:10.1109/5.47729.

    • Search Google Scholar
    • Export Citation
  • Fu, D., and X. Guo, 2007: Numerical study on a severe downburst-producing thunderstorm on 23 August 2001 in Beijing. Adv. Atmos. Sci., 24, 227238, doi:10.1007/s00376-007-0227-2.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1985: The downburst, microburst and macroburst. SMRP Rep. 210, 122 pp. [NTIS PB-85-148880.]

  • Fujita, T. T., 1986: DFW microburst on August 2, 1985. SMRP Rep. 217, 154 pp. [NTIS PB-86-131638.]

  • Fujita, T. T., and F. Caracena, 1977: An analysis of three weather-related aircraft accidents. Bull. Amer. Meteor. Soc., 58, 11641181, doi:10.1175/1520-0477(1977)058<1164:AAOTWR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Giangrande, S. E., J. M. Krause, and A. V. Ryzhkov, 2008: Automatic designation of the melting layer with a polarimetric prototype of the WSR-88D radar. J. Appl. Meteor. Climatol., 47, 13541364, doi:10.1175/2007JAMC1634.1.

    • Search Google Scholar
    • Export Citation
  • Glickman, T., Ed., 2000: Glossary of Meteorology. 2nd ed. Amer. Meteor. Soc., 855 pp. [Available online at http://glossary.ametsoc.org/.]

    • Search Google Scholar
    • Export Citation
  • Hall, M. P. M., J. W. F. Goddard, and S. M. Cherry, 1984: Identification of hydrometeors and other targets by dual-polarization radar. Radio Sci., 19, 132140, doi:10.1029/RS019i001p00132.

    • Search Google Scholar
    • Export Citation
  • Harimaya, T., 1976: The embryo and formation of graupel. J. Meteor. Soc. Japan Ser. II, 54, 4251. [Available online at https://www.jstage.jst.go.jp/article/jmsj1965/54/1/54_1_42/_pdf.]

    • Search Google Scholar
    • Export Citation
  • Knight, N. C., 1981: The climatology of hailstone embryos. J. Appl. Meteor., 20, 750755, doi:10.1175/1520-0450(1981)020<0750:TCOHE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kosiba, K., J. Wurman, Y. Richardson, P. Markowski, P. Robinson, and J. Marquis, 2013: Genesis of the Goshen County, Wyoming, tornado on 5 June 2009 during VORTEX2. Mon. Wea. Rev., 141, 11571181, doi:10.1175/MWR-D-12-00056.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., and A. V. Ryzhkov, 2008: Polarimetric signatures in supercell thunderstorms. J. Appl. Meteor. Climatol., 47, 19401961, doi:10.1175/2007JAMC1874.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. M. Ganson, and A. V. Ryzhkov, 2012: Freezing of raindrops in deep convective updrafts: A microphysical and polarimetric model. J. Atmos. Sci., 69, 34713490, doi:10.1175/JAS-D-12-067.1.

    • Search Google Scholar
    • Export Citation
  • Kuster, C. M., P. L. Heinselman, and T. J. Schuur, 2016: Rapid-update radar observations of downbursts occurring within an intense multicell thunderstorm on 14 June 2011. Wea. Forecasting, 31, 827851, doi:10.1175/WAF-D-15-0081.1.

    • Search Google Scholar
    • Export Citation
  • Lamb, D., and J. Verlinde, 2011: Physics and Chemistry of Clouds. Cambridge University Press, 584 pp.

  • Lim, S., V. Chandrasekar, and V. N. Bringi, 2005: Hydrometeor classification system using dual-polarization radar measurements: Model improvements and in situ verification. IEEE Trans. Geosci. Remote Sens., 43, 792801, doi:10.1109/TGRS.2004.843077.

    • Search Google Scholar
    • Export Citation
  • Liu, H., and V. Chandrasekar, 2000: Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Oceanic Technol., 17, 140164, doi:10.1175/1520-0426(2000)017<0140:COHBOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Loney, M. L., D. S. Zrnić, J. M. Straka, and A. V. Ryzhkov, 2002: Enhanced polarimetric radar signatures above the melting level in a supercell storm. J. Appl. Meteor., 41, 11791194, doi:10.1175/1520-0450(2002)041<1179:EPRSAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mahale, V. N., G. Zhang, and M. Xue, 2013: The microphysics of the 14 June 2011 Norman, Oklahoma, downburst from dual-polarization and dual-Doppler radar measurements. 16th Conf. on Aviation, Range, and Aerospace Meteorology, Austin, TX, Amer. Meteor. Soc., 5.1. [Available online at https://ams.confex.com/ams/93Annual/webprogram/Manuscript/Paper216605/Microphysics_14_June_2011_Downburst_Mahale_Zhang_Xue.pdf.]

  • Mahale, V. N., G. Zhang, and M. Xue, 2014: Fuzzy logic classification of S-band polarimetric radar echoes to identify three-body scattering and improve data quality. J. Appl. Meteor. Climatol., 53, 20172033, doi:10.1175/JAMC-D-13-0358.1.

    • Search Google Scholar
    • Export Citation
  • Marquis, J., Y. Richardson, J. Wurman, and P. Markowski, 2008: Single- and dual-Doppler analysis of a tornadic vortex and surrounding storm-scale flow in the Crowell, Texas, supercell of 30 April 2000. Mon. Wea. Rev., 136, 50175043, doi:10.1175/2008MWR2442.1.

    • Search Google Scholar
    • Export Citation
  • McCann, D. W., 1994: WINDEX—A new index for forecasting microburst potential. Wea. Forecasting, 9, 532541, doi:10.1175/1520-0434(1994)009<0532:WNIFFM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • McPherson, R. A., and Coauthors, 2007: Statewide monitoring of the mesoscale environment: A technical update on the Oklahoma Mesonet. J. Atmos. Oceanic Technol., 24, 301321, doi:10.1175/JTECH1976.1.

    • Search Google Scholar
    • Export Citation
  • Melnikov, V. M., and D. S. Zrnić, 2007: Autocorrelation and cross-correlation estimators of polarimetric variables. J. Atmos. Oceanic Technol., 24, 13371350, doi:10.1175/JTECH2054.1.

    • Search Google Scholar
    • Export Citation
  • Merritt, M. W., D. Klingle-Wilson, and S. D. Campbell, 1989: Wind shear detection with pencil-beam radars. Lincoln Laboratory Journal, Vol. 2, MIT, 483–510. [Available online at https://www.ll.mit.edu/publications/journal/pdf/vol02_no3/2.3.10.windshearpencilradar.pdf.]

  • Miller, L. J., and S. M. Fredrick, 1998: CEDRIC: Custom Editing and Display of Reduced Information in Cartesian Space. National Center for Atmospheric Research Tech. Manual, 130 pp. [Available online at http://www.eol.ucar.edu/system/files/cedric_doc.pdf.]

  • Morris, D. A., and M. A. Shafer, 1996: Detailed surface observations during the Lahoma hail and windstorm. Preprints, 18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc., 6569.

  • National Transportation Safety Board, 1983: Aircraft accident report: Pan American World Airways, Inc., Clipper 759, Boeing 727-235, N4737, New Orleans International Airport Kenner, Louisiana July 9, 1982. NTSB Rep. AAR-83-02, 113 pp. [NTIS PB 83-910402.] [Available online at http://www.ntsb.gov/investigations/AccidentReports/Reports/AAR8302.pdf.]

  • NOAA/NCDC, 2011a: NEXRAD Level-II radar data. NOAA/NCDC, accessed 20 April 2012. [Available online at https://www.ncdc.noaa.gov/data-access/radar-data/nexrad.]

  • NOAA/NCDC, 2011b: Storm events database. NOAA/NCDC, accessed 2 August 2015. [Available online at http://www.ncdc.noaa.gov/stormevents.]

  • NWS, 2014: Weather Forecast Office severe weather products specification. NWS Rep. 10511, 35 pp. [Available online at http://www.nws.noaa.gov/directives/sym/pd01005011curr.pdf.]

  • Office of the Federal Coordinator for Meteorological Services and Supporting Research, 2011: Doppler radar meteorological observations. Part A: System concepts, responsibilities, and procedures. Federal Meteorological Handbook 11, FCM-H11A-2011. [Available online at http://www.roc.noaa.gov/wsr88d/PublicDocs/PartA_FMH11_Rev11.pdf.]

  • Oklahoma Climatological Survey, 2011: Oklahoma Mesonet surface observation data. University of Oklahoma, accessed 27 January 2015. [Available online at https://www.mesonet.org/index.php/site/contact.]

  • Oye, D., and M. Case, 1995: REORDER—A program for gridding radar data: Installation and use manual for the UNIX version. National Center for Atmospheric Research Tech. Manual, 44 pp. [Available online at https://www.eol.ucar.edu/system/files/unixreorder.pdf.]

  • Park, H. S., A. V. Ryzhkov, D. S. Zrnić, and K.-E. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, doi:10.1175/2008WAF2222205.1.

    • Search Google Scholar
    • Export Citation
  • Proctor, F. H., 1988: Numerical simulations of an isolated microburst. Part I: Dynamics and structure. J. Atmos. Sci., 45, 31373160, doi:10.1175/1520-0469(1988)045<3137:NSOAIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Proctor, F. H., 1989: Numerical simulations of an isolated microburst. Part II: Sensitivity experiments. J. Atmos. Sci., 46, 21432165, doi:10.1175/1520-0469(1989)046<2143:NSOAIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pruppacher, H. R., and J. D. Klett, 1997: Microphysics of Clouds and Precipitation. 2nd ed. Kluwer, 954 pp.

  • Richter, H., J. Peter, and S. Collis, 2014: Analysis of a destructive wind storm on 16 November 2008 in Brisbane, Australia. Mon. Wea. Rev., 142, 30383060, doi:10.1175/MWR-D-13-00405.1.

    • Search Google Scholar
    • Export Citation
  • Saxion, D. S., and R. L. Ice, 2012: New science for the WSR-88D: Status of the dual-polarization upgrade. 28th Conf. on Interactive Information Processing Systems, New Orleans, LA, Amer. Meteor. Soc., 5. [Available online at https://ams.confex.com/ams/92Annual/webprogram/Manuscript/Paper197645/NEXRAD_DP_Status_28th_IIPS_Jan2012.pdf.]

  • Scharfenberg, K. A., 2003: Polarimetric radar signatures in microburst-producing thunderstorms. 31st Int. Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc., 8B.4. [Available online at https://ams.confex.com/ams/pdfpapers/64413.pdf.]

  • Skinner, P. S., C. C. Weiss, J. L. Schroeder, L. J. Wicker, and M. I. Biggerstaff, 2011: Observations of the surface boundary structure within the 23 May 2007 Perryton, Texas, supercell. Mon. Wea. Rev., 139, 37303749, doi:10.1175/MWR-D-10-05078.1.

    • Search Google Scholar
    • Export Citation
  • Snyder, J. C., A. V. Ryzhkov, M. R. Kumjian, A. P. Khain, and J. Picca, 2015: A ZDR column detection algorithm to examine convective storm updrafts. Wea. Forecasting, 30, 18191844, doi:10.1175/WAF-D-15-0068.1.

    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., 1985: A simple model of evaporatively driven downdraft: Application to microburst downdraft. J. Atmos. Sci., 42, 10041023, doi:10.1175/1520-0469(1985)042<1004:ASMOED>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Srivastava, R. C., 1987: A model of intense downdrafts driven by the melting and evaporation of precipitation. J. Atmos. Sci., 44, 17521773, doi:10.1175/1520-0469(1987)044<1752:AMOIDD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., and D. S. Zrnić, 1993: An algorithm to deduce hydrometeor types and contents from multi-parameter radar data. Preprints, 26th Int. Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 513515.

  • Straka, J. M., D. S. Zrnić, and A. V. Ryzhkov, 2000: Bulk hydrometeor classification and quantification using polarimetric radar data: Synthesis of relations. J. Appl. Meteor., 39, 13411372, doi:10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Suzuki, S.-I., T. Maesaka, K. Iwanami, R. Misumi, S. Shimizu, and M. Maki, 2010: Multi-parameter radar observation of a downburst storm in Tokyo on 12 July 2008. SOLA, 6, 5356, doi:10.2151/sola.2010-014.

    • Search Google Scholar
    • Export Citation
  • Tanamachi, R. L., and P. L. Heinselman, 2016: Rapid-scan, polarimetric observations of central Oklahoma severe storms on 31 May 2013. Wea. Forecasting, 31, 1942, doi:10.1175/WAF-D-15-0111.1.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., S. M. Ellis, R. Oye, D. S. Zrnić, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388, doi:10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., 2001: Convectively driven high wind events. Severe Convective Storms, Meteor. Monogr., No. 50, Amer. Meteor. Soc., 255–298.

  • Wakimoto, R. M., and V. N. Bringi, 1988: Dual-polarization observations of microbursts associated with intense convection: The 20 July storm during the MIST project. Mon. Wea. Rev., 116, 15211539, doi:10.1175/1520-0493(1988)116<1521:DPOOMA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wakimoto, R. M., C. J. Kessinger, and D. E. Kingsmill, 1994: Kinematic, thermodynamic, and visual structure of low-reflectivity microbursts. Mon. Wea. Rev., 122, 7292, doi:10.1175/1520-0493(1994)122<0072:KTAVSO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Warning Decision Training Division, 2016: Convective storm structure and evolution. NOAA/NWS Warning Decision Training Division Radar and Applications Course 6, 592 pp. [Available online at http://wdtb.noaa.gov/courses/rac/documentation/rac17-severe.pdf.]

  • Whiton, R. C., P. L. Smith, S. G. Bigler, K. E. Wilk, and A. C. Harbuck, 1998: History of operational use of weather radar by U.S. weather services. Part II: Development of operational Doppler weather radars. Wea. Forecasting, 13, 244252, doi:10.1175/1520-0434(1998)013<0244:HOOUOW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wilson, J. W., and R. M. Wakimoto, 2001: The discovery of the downburst: T. T. Fujita’s contribution. Bull. Amer. Meteor. Soc., 82, 4962, doi:10.1175/1520-0477(2001)082<0049:TDOTDT>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wurman, J., K. Kosiba, P. Markowski, Y. Richardson, D. Dowell, and P. Robinson, 2010: Finescale single- and dual-Doppler analysis of tornado intensification, maintenance, and dissipation in the Orleans, Nebraska, supercell. Mon. Wea. Rev., 138, 44394455, doi:10.1175/2010MWR3330.1.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., and A. V. Ryzhkov, 1999: Polarimetry for weather surveillance radars. Bull. Amer. Meteor. Soc., 80, 389406, doi:10.1175/1520-0477(1999)080<0389:PFWSR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., A. V. Ryzhkov, J. Straka, Y. Liu, and J. Vivekanandan, 2001: Testing a procedure for automatic classification of hydrometeor types. J. Atmos. Oceanic Technol., 18, 892913, doi:10.1175/1520-0426(2001)018<0892:TAPFAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 656 293 10
PDF Downloads 572 173 10