Characterization of Hydrometeors in Sahelian Convective Systems with an X-Band Radar and Comparison with In Situ Measurements. Part II: A Simple Brightband Method to Infer the Density of Icy Hydrometeors

M. Alcoba Geoscience Environnement Toulouse, UMR 5563 CNRS/IRD/UTIII, Observatoire Midi-Pyrénées, Toulouse, France

Search for other papers by M. Alcoba in
Current site
Google Scholar
PubMed
Close
,
M. Gosset Geoscience Environnement Toulouse, UMR 5563 CNRS/IRD/UTIII, Observatoire Midi-Pyrénées, Toulouse, France

Search for other papers by M. Gosset in
Current site
Google Scholar
PubMed
Close
,
M. Kacou Geoscience Environnement Toulouse, UMR 5563 CNRS/IRD/UTIII, Observatoire Midi-Pyrénées, Toulouse, France, and Laboratoire de Physique de l’Atmosphère et de Mécanique des Fluides, Université Félix Houphouët-Boigny, Abidjan, Ivory Coast

Search for other papers by M. Kacou in
Current site
Google Scholar
PubMed
Close
,
F. Cazenave Laboratoire d’étude des Transferts en Hydrologie et Environnement, IRD/Université Grenoble Alpes/CNRS, Grenoble, France

Search for other papers by F. Cazenave in
Current site
Google Scholar
PubMed
Close
, and
E. Fontaine Laboratoire de Météorologie Physique, Université Blaise Pascal, Aubière, France

Search for other papers by E. Fontaine in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A simple scheme that is based on the shape and intensity of the radar bright band is used to infer the density of hydrometeors just above the freezing level in Sahelian mesoscale convective systems (MCS). Four MCS jointly observed by a ground-based X-band radar and by an instrumented aircraft as part of the Megha-Tropiques algorithm-validation campaign during August 2010 in Niamey, Niger, are analyzed. The instrumented aircraft (with a 94-GHz radar and various optical probes on board) provided mass–diameter laws for the particles sampled during the flights. The mass–diameter laws derived from the ground-radar vertical profile of reflectivity (VPR) for each flight are compared with those derived from the airborne measurements. The density laws derived by both methods are consistent and encourage further use of the simple VPR scheme to quantify hydrometeor density laws and their variability for various analyses (microphysical processes and icy-hydrometeor scattering and radiative properties).

Corresponding author address: M. Gosset, GET (UMR 5563 CNRS, IRD, UTIII), Observatoire Midi-Pyrénées, 14 Ave. Edouard Belin, 31400 Toulouse, France. E-mail: marielle.gosset@ird.fr

Abstract

A simple scheme that is based on the shape and intensity of the radar bright band is used to infer the density of hydrometeors just above the freezing level in Sahelian mesoscale convective systems (MCS). Four MCS jointly observed by a ground-based X-band radar and by an instrumented aircraft as part of the Megha-Tropiques algorithm-validation campaign during August 2010 in Niamey, Niger, are analyzed. The instrumented aircraft (with a 94-GHz radar and various optical probes on board) provided mass–diameter laws for the particles sampled during the flights. The mass–diameter laws derived from the ground-radar vertical profile of reflectivity (VPR) for each flight are compared with those derived from the airborne measurements. The density laws derived by both methods are consistent and encourage further use of the simple VPR scheme to quantify hydrometeor density laws and their variability for various analyses (microphysical processes and icy-hydrometeor scattering and radiative properties).

Corresponding author address: M. Gosset, GET (UMR 5563 CNRS, IRD, UTIII), Observatoire Midi-Pyrénées, 14 Ave. Edouard Belin, 31400 Toulouse, France. E-mail: marielle.gosset@ird.fr
Save
  • Andrieu, H., and J. D. Creutin, 1995: Identification of vertical profiles of radar reflectivity for hydrological applications using an inverse method. Part II: Formulation. J. Appl. Meteor., 34, 240259, doi:10.1175/1520-0450(1995)034<0240:IOVPOR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bennartz, R., and G. W. Petty, 2001: The sensitivity of microwave remote sensing observations of precipitation to ice particle size distributions. J. Appl. Meteor., 40, 345364, doi:10.1175/1520-0450(2001)040<0345:TSOMRS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Boudevillain, B., and H. Andrieu, 2003: Assessment of vertically integrated liquid (VIL) water content radar measurement. J. Atmos. Oceanic Technol., 20, 807819, doi:10.1175/1520-0426(2003)020<0807:AOVILV>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bouniol, D., J. Delanoë, C. Duroure, A. Protat, V. Giraud, and G. Penide, 2010: Microphysical characterisation of West African MCS anvils. Quart. J. Roy. Meteor. Soc., 136, 323344, doi:10.1002/qj.557.

    • Search Google Scholar
    • Export Citation
  • Cazenave, F., M. Gosset, M. Kacou, E. Fontaine, C. Duroure, and B. Dolan, 2016: Characterization of hydrometeors in Sahelian convective systems with an X-band radar and comparison with in situ measurements. Part I: Particle identification from polarimetric data. J. Appl. Meteor. Climatol., 55, 231249, doi:10.1175/JAMC-D-15-0013.1.

    • Search Google Scholar
    • Export Citation
  • Chapon, B., G. Delrieu, M. Gosset, and B. Boudevillain, 2008: Variability of rain drop size distribution and its effect on the ZR relationship: A case study for intense Mediterranean rainfall. Atmos. Res., 87, 5265, doi:10.1016/j.atmosres.2007.07.003.

    • Search Google Scholar
    • Export Citation
  • Dolan, B., and S. A. Rutledge, 2009: A theory-based hydrometeor identification algorithm for X-band polarimetric radars. J. Atmos. Oceanic Technol., 26, 20712088, doi:10.1175/2009JTECHA1208.1.

    • Search Google Scholar
    • Export Citation
  • Evaristo, R., G. Scialom, N. Viltard, and Y. Lemaître, 2010: Polarimetric signatures and hydrometeor classification of West African squall lines. Quart. J. Roy. Meteor. Soc., 136, 272288, doi:10.1002/qj.561.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., and I. Zawadzki, 1995: Long-term radar observations of the melting layer of precipitation and their interpretation. J. Atmos. Sci., 52, 838851, doi:10.1175/1520-0469(1995)052<0838:LTROOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fabry, F., and W. Szyrmer, 1999: Modeling of the melting layer. Part II: Electromagnetic. J. Atmos. Sci., 56, 35933600, doi:10.1175/1520-0469(1999)056<3593:MOTMLP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fiolleau, T., and R. Roca, 2013: An algorithm for the detection and tracking of tropical mesoscale convective systems using infrared images from geostationary satellite. IEEE Trans. Geosci. Remote Sens., 51, 43024315, doi:10.1109/TGRS.2012.2227762.

    • Search Google Scholar
    • Export Citation
  • Fontaine, E., A. Schwarzenboeck, J. Delanoë, W. Wobrock, D. Leroy, R. Dupuy, and A. Protat, 2014: Constraining mass–diameter relations from hydrometeor images and cloud radar reflectivities in tropical continental and oceanic convective anvils. Atmos. Chem. Phys. Discuss., 14, 29833041, doi:10.5194/acpd-14-2983-2014.

    • Search Google Scholar
    • Export Citation
  • Johnson, B. T., G. W. Petty, and G. Skofronick-Jackson, 2012: Microwave properties of ice-phase hydrometeors for radar and radiometers: Sensitivity to model assumptions. J. Appl. Meteor. Climatol., 51, 21522171, doi:10.1175/JAMC-D-11-0138.1.

    • Search Google Scholar
    • Export Citation
  • Kalogiros, J., M. N. Anagnostou, E. N. Anagnostou, M. Montopoli, E. Picciotti, and F. S. Marzano, 2013: Correction of polarimetric radar reflectivity measurements and rainfall estimates for apparent vertical profile in stratiform rain. J. Appl. Meteor. Climatol., 52, 11701186, doi:10.1175/JAMC-D-12-0140.1.

    • Search Google Scholar
    • Export Citation
  • Kirstetter, P.-E., H. Andrieu, B. Boudevillain, and G. Delrieu, 2013: A physically based identification of vertical profiles of reflectivity from volume scan radar data. J. Appl. Meteor. Climatol., 52, 16451663, doi:10.1175/JAMC-D-12-0228.1.

    • Search Google Scholar
    • Export Citation
  • Klaassen, W., 1988: Radar observations and simulation of the melting layer of precipitation. J. Atmos. Sci., 45, 37413753, doi:10.1175/1520-0469(1988)045<3741:ROASOT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Koffi, A. K., M. Gosset, E. P. Zahiri, A. D. Ochou, M. Kacou, F. Cazenave, and P. Assamoi, 2014: Evaluation of X-band polarimetric radar estimation of rainfall and rain drop size distribution parameters in West Africa. Atmos. Res., 143, 438461, doi:10.1016/j.atmosres.2014.03.009.

    • Search Google Scholar
    • Export Citation
  • Kummerow, C., W. S. Olson, and L. Giglio, 1996: A simplified scheme for obtaining precipitation and vertical hydrometeor profiles from passive microwave sensors. IEEE Trans. Geosci. Remote Sens., 34, 12131232, doi:10.1109/36.536538.

    • Search Google Scholar
    • Export Citation
  • Leary, C. A., and R. A. Houze Jr., 1979: The structure and evolution of convection in a tropical cloud cluster. J. Atmos. Sci., 36, 437457, doi:10.1175/1520-0469(1979)036<0437:TSAEOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Martini, M., N. Viltard, S. Ellis, and E. Fontaine, 2015: Ice microphysics retrieval in the convective systems of the Indian Ocean during the CINDY–DYNAMO campaign. Atmos. Res., 163, 1323, doi:10.1016/j.atmosres.2014.12.013.

    • Search Google Scholar
    • Export Citation
  • Moumouni, S., M. Gosset, and E. Houngninou, 2008: Main features of rain drop size distributions observed in Benin, West Africa, with optical disdrometers. Geophys. Res. Lett., 35, L23807, doi:10.1029/2008GL035755.

    • Search Google Scholar
    • Export Citation
  • Nelder, J. A., and R. Mead, 1965: A simplex method for function minimization. Comput. J., 7, 308313, doi:10.1093/comjnl/7.4.308.

  • Protat, A., and Coauthors, 2009: Assessment of CloudSat reflectivity measurements and ice cloud properties using ground-based and airborne cloud radar observations. J. Atmos. Oceanic Technol., 26, 17171741, doi:10.1175/2009JTECHA1246.1.

    • Search Google Scholar
    • Export Citation
  • Sánchez‐Diezma, R., I. Zawadzki, and D. Sempere‐Torres, 2000: Identification of the bright band through the analysis of volumetric radar data. J. Geophys. Res., 105, 22252236, doi:10.1029/1999JD900310.

    • Search Google Scholar
    • Export Citation
  • Steiner, M., R. A. Houze Jr., and S. E. Yuter, 1995: Climatological characterization of three-dimensional storm structure from operational radar and rain gauge data. J. Appl. Meteor., 34, 19782007, doi:10.1175/1520-0450(1995)034<1978:CCOTDS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Stephens, G. L., and C. D. Kummerow, 2007: The remote sensing of clouds and precipitation from space: A review. J. Atmos. Sci., 64, 37423765, doi:10.1175/2006JAS2375.1.

    • Search Google Scholar
    • Export Citation
  • Szyrmer, W., and I. Zawadzki, 1999: Modeling of the melting layer. Part I: Dynamics and microphysics. J. Atmos. Sci., 56, 35733592, doi:10.1175/1520-0469(1999)056<3573:MOTMLP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Testud, J., S. Oury, R. A. Black, P. Amayenc, and X. Dou, 2001: The concept of “normalized” distribution to describe raindrop spectra: A tool for cloud physics and cloud remote sensing. J. Appl. Meteor., 40, 11181140, doi:10.1175/1520-0450(2001)040<1118:TCONDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Uijlenhoet, R., M. Steiner, and J. A. Smith, 2003: Variability of raindrop size distributions in a squall line and implications for radar rainfall estimation. J. Hydrometeor., 4, 4361, doi:10.1175/1525-7541(2003)004<0043:VORSDI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Viltard, N., C. Burlaud, and C. D. Kummerow, 2006: Rain retrieval from TMI brightness temperature measurements using a TRMM PR-based database. J. Appl. Meteor. Climatol., 45, 455466, doi:10.1175/JAM2346.1.

    • Search Google Scholar
    • Export Citation
  • Zawadzki, I., W. Szyrmer, C. Bell, and F. Fabry, 2005: Modeling of the melting layer. Part III: The density effect. J. Atmos. Sci., 62, 37053723, doi:10.1175/JAS3563.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 617 379 30
PDF Downloads 159 52 11