A Case Study of Radar Observations and WRF LES Simulations of the Impact of Ground-Based Glaciogenic Seeding on Orographic Clouds and Precipitation. Part II: AgI Dispersion and Seeding Signals Simulated by WRF

Lulin Xue National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Lulin Xue in
Current site
Google Scholar
PubMed
Close
,
Xia Chu University of Wyoming, Laramie, Wyoming

Search for other papers by Xia Chu in
Current site
Google Scholar
PubMed
Close
,
Roy Rasmussen National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Roy Rasmussen in
Current site
Google Scholar
PubMed
Close
,
Daniel Breed National Center for Atmospheric Research, Boulder, Colorado

Search for other papers by Daniel Breed in
Current site
Google Scholar
PubMed
Close
, and
Bart Geerts University of Wyoming, Laramie, Wyoming

Search for other papers by Bart Geerts in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Several Weather Research and Forecasting (WRF) Model simulations of natural and seeded clouds have been conducted in non-LES and LES (large-eddy simulation) modes to investigate the seeding impact on wintertime orographic clouds for an actual seeding case on 18 February 2009 in the Medicine Bow Mountains of Wyoming. Part I of this two-part series has shown the capability of WRF LES with 100-m grid spacing to capture the essential environmental conditions by comparing the model results with measurements from a variety of instruments. In this paper, the silver iodide (AgI) dispersion features, the AgI impacts on the turbulent kinetic energy (TKE), the microphysics, and the precipitation are examined in detail using the model data, which leads to five main results. 1) The vertical dispersion of AgI particles is more efficient in cloudy conditions than in clear conditions. 2) The wind shear and the buoyancy are both important TKE production mechanisms in the wintertime PBL over complex terrain in cloudy conditions. The buoyancy-induced eddies are more responsible for the AgI vertical dispersion than the shear-induced eddies are. 3) Seeding has insignificant effects on the cloud dynamics. 4) AgI particles released from the ground-based generators affect the cloud within the boundary layer below 1 km AGL through nucleating extra ice crystals, converting liquid water into ice, depleting more vapor, and generating more precipitation on the ground. The AgI nucleation rate is inversely related to the natural ice nucleation rate. 5) The seeding effects on the ground precipitation are confined within narrow areas. The relative seeding effect ranges between 5% and 20% for the simulations with different grid spacing.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Lulin Xue, National Center for Atmospheric Research, 3450 Mitchell Ln., Boulder, CO 80301. E-mail: xuel@ucar.edu

Abstract

Several Weather Research and Forecasting (WRF) Model simulations of natural and seeded clouds have been conducted in non-LES and LES (large-eddy simulation) modes to investigate the seeding impact on wintertime orographic clouds for an actual seeding case on 18 February 2009 in the Medicine Bow Mountains of Wyoming. Part I of this two-part series has shown the capability of WRF LES with 100-m grid spacing to capture the essential environmental conditions by comparing the model results with measurements from a variety of instruments. In this paper, the silver iodide (AgI) dispersion features, the AgI impacts on the turbulent kinetic energy (TKE), the microphysics, and the precipitation are examined in detail using the model data, which leads to five main results. 1) The vertical dispersion of AgI particles is more efficient in cloudy conditions than in clear conditions. 2) The wind shear and the buoyancy are both important TKE production mechanisms in the wintertime PBL over complex terrain in cloudy conditions. The buoyancy-induced eddies are more responsible for the AgI vertical dispersion than the shear-induced eddies are. 3) Seeding has insignificant effects on the cloud dynamics. 4) AgI particles released from the ground-based generators affect the cloud within the boundary layer below 1 km AGL through nucleating extra ice crystals, converting liquid water into ice, depleting more vapor, and generating more precipitation on the ground. The AgI nucleation rate is inversely related to the natural ice nucleation rate. 5) The seeding effects on the ground precipitation are confined within narrow areas. The relative seeding effect ranges between 5% and 20% for the simulations with different grid spacing.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Lulin Xue, National Center for Atmospheric Research, 3450 Mitchell Ln., Boulder, CO 80301. E-mail: xuel@ucar.edu
Save
  • Breed, D., R. Rasmussen, B. Lawrence, B. Boe, T. Deshler, and C. Weeks, 2014: Evaluating winter orographic cloud seeding: Design of the Wyoming Weather Modification Pilot Project (WWMPP). J. Appl. Meteor. Climatol., 53, 282299, doi:10.1175/JAMC-D-13-0128.1.

    • Search Google Scholar
    • Export Citation
  • Bruintjes, R. T., 1999: A review of cloud seeding experiments to enhance precipitation and some new prospects. Bull. Amer. Meteor. Soc., 80, 805820, doi:10.1175/1520-0477(1999)080<0805:AROCSE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chappell, C. F., L. O. Grant, and P. W. Mielke, 1971: Cloud seeding effects on precipitation intensity and duration of wintertime orographic clouds. J. Appl. Meteor., 10, 10061010, doi:10.1175/1520-0450(1971)010<1006:CSEOPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Chow, F. K., and R. L. Street, 2009: Evaluation of turbulence closure models for large-eddy simulation over complex terrain: Flow over Askervein Hill. J. Appl. Meteor. Climatol., 48, 10501065, doi:10.1175/2008JAMC1862.1.

    • Search Google Scholar
    • Export Citation
  • Chow, F. K., A. P. Weigel, R. L. Street, M. W. Rotach, and M. Xue, 2006: High-resolution large-eddy simulations of flow in a steep alpine valley. Part I: Methodology, verification, and sensitivity experiments. J. Appl. Meteor. Climatol., 45, 6386, doi:10.1175/JAM2322.1.

    • Search Google Scholar
    • Export Citation
  • Chu, X., L. Xue, B. Geerts, R. Rasmussen, and D. Breed, 2014: A case study of radar observations and WRF LES simulations of the impact of ground-based glaciogenic seeding on orographic clouds and precipitation. Part I: Observations and model validations. J. Appl. Meteor. Climatol., 53, 22642286, doi:10.1175/JAMC-D-14-0017.1.

    • Search Google Scholar
    • Export Citation
  • Deardorff, J. W., 1980: Stratocumulus-capped mixed layers derived from a three-dimensional model. Bound.-Layer Meteor., 18, 495527, doi:10.1007/BF00119502.

    • Search Google Scholar
    • Export Citation
  • DeMott, P. J., 1995: Quantitative descriptions of ice formation mechanisms of silver iodide-type aerosols. Atmos. Res., 38, 6399, doi:10.1016/0169-8095(94)00088-U.

    • Search Google Scholar
    • Export Citation
  • Deshler, T., and D. W. Reynolds, 1990: The persistence of seeding effects in a winter orographic cloud seeded with silver iodide burned in acetone. J. Appl. Meteor., 29, 477488, doi:10.1175/1520-0450(1990)029<0477:TPOSEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Deshler, T., D. W. Reynolds, and A. W. Huggins, 1990: Physical response of winter orographic clouds over the Sierra Nevada to airborne seeding using dry ice or silver iodide. J. Appl. Meteor., 29, 288330, doi:10.1175/1520-0450(1990)029<0288:PROWOC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Elliott, R. D., R. W. Shaffer, A. Court, and J. F. Hannaford, 1978: Randomized cloud seeding in the San Juan Mountains, Colorado. J. Appl. Meteor., 17, 12981318, doi:10.1175/1520-0450(1978)017<1298:RCSITS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Errico, R. M., 1985: Spectra computed from a limited area grid. Mon. Wea. Rev., 113, 15541562, doi:10.1175/1520-0493(1985)113<1554:SCFALA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gabriel, K. R., 1995: Climax again? J. Appl. Meteor., 34, 12251227, doi:10.1175/1520-0450(1995)034<1225:CA>2.0.CO;2.

  • Geerts, B., Q. Miao, Y. Yang, R. Rasmussen, and D. Breed, 2010: An airborne profiling radar study of the impact of glaciogenic cloud seeding on snowfall from winter orographic clouds. J. Atmos. Sci., 67, 32863302, doi:10.1175/2010JAS3496.1.

    • Search Google Scholar
    • Export Citation
  • Geerts, B., Q. Miao, and Y. Yang, 2011: Boundary layer turbulence and orographic precipitation growth in cold clouds: Evidence from profiling airborne radar data. J. Atmos. Sci., 68, 23442365, doi:10.1175/JAS-D-10-05009.1.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., 1975: The nature of winter clouds and precipitation in the Cascade Mountains and their modification by artificial seeding. Part I: Natural conditions. J. Appl. Meteor., 14, 783804, doi:10.1175/1520-0450(1975)014<0783:TNOWCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Huggins, A. W., 2007: Another wintertime cloud seeding case study with strong evidence of seeding effects. J. Wea. Modif., 39, 936.

  • Jing, X., and B. Geerts, 2015: Dual-polarization radar data analysis of the impact of ground-based glaciogenic seeding on winter orographic clouds. Part II: Convective clouds. J. Appl. Meteor. Climatol., 54, 20992117, doi:10.1175/JAMC-D-15-0056.1.

    • Search Google Scholar
    • Export Citation
  • Manton, M. J., and L. Warren, 2011: A confirmatory snowfall enhancement project in the Snowy Mountains of Australia. Part II: Primary and associated analyses. J. Appl. Meteor. Climatol., 50, 14481458, doi:10.1175/2011JAMC2660.1.

    • Search Google Scholar
    • Export Citation
  • Marwitz, J. D., and R. E. Stewart, 1981: Some seeding signatures in Sierra storms. J. Appl. Meteor., 20, 11291144, doi:10.1175/1520-0450(1981)020<1129:SSSISS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Meyers, M. P., P. J. DeMott, and W. R. Cotton, 1995: A comparison of seeded and nonseeded orographic cloud simulations with an explicit cloud model. J. Appl. Meteor., 34, 834846, doi:10.1175/1520-0450(1995)034<0834:ACOSAN>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mielke, P. W., Jr., 1995: Comments on the Climax I and II experiments including replies to Rangno and Hobbs. J. Appl. Meteor., 34, 12281234, doi:10.1175/1520-0450(1995)034<1228:COTCIA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mielke, P. W., Jr., L. O. Grant, and C. F. Chappell, 1970: Elevation and spatial variation effects of wintertime orographic cloud seeding. J. Appl. Meteor., 9, 476488, doi:10.1175/1520-0450(1970)009<0476:EASVEO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mielke, P. W., Jr., L. O. Grant, and C. F. Chappell, 1971: An independent replication of the Climax wintertime orographic cloud seeding experiment. J. Appl. Meteor., 10, 11981212, doi:10.1175/1520-0450(1971)010<1198:AIROTC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mielke, P. W., Jr., G. W. Brier, L. O. Grant, G. J. Mulvey, and P. N. Rosenzweig, 1981: A statistical reanalysis of the replicated Climax I and II wintertime orographic cloud seeding experiments. J. Appl. Meteor., 20, 643659, doi:10.1175/1520-0450(1981)020<0643:ASROTR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mirocha, J., B. Kosović, and G. Kirkel, 2014: Resolved turbulence characteristics in large-eddy simulations nested within mesoscale simulations using the Weather Research and Forecasting Model. Mon. Wea. Rev., 142, 806831, doi:10.1175/MWR-D-13-00064.1.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., 1984: A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci., 41, 20522062, doi:10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Moeng, C.-H., J. Dudhia, J. Kemp, and P. Sullivan, 2007: Examining two-way grid nesting for large eddy simulation of the PBL using the WRF Model. Mon. Wea. Rev., 135, 22952311, doi:10.1175/MWR3406.1.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Thompson, M. Gilmore, W. Gong, R. Leaitch, and A. Muhlbauer, 2009: WMO international cloud modeling workshop. Bull. Amer. Meteor. Soc., 90, 16831686, doi:10.1175/2009BAMS2817.1.

    • Search Google Scholar
    • Export Citation
  • Orville, H. D., 1996: A review of cloud modeling in weather modification. Bull. Amer. Meteor. Soc., 77, 15351555, doi:10.1175/1520-0477(1996)077<1535:AROCMI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Prasad, N., A. R. Rodi, and A. J. Heymsfield, 1989: Observations and numerical simulations of precipitation development in seeded clouds over the Sierra Nevada. J. Appl. Meteor., 28, 10311049, doi:10.1175/1520-0450(1989)028<1031:OANSOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reisin, T., Z. Levin, and S. Tzivion, 1996: Rain production in convective clouds as simulated in an axisymmetric model with detailed microphysics: Part I. Description of the model. J. Atmos. Sci., 53, 497519, doi:10.1175/1520-0469(1996)053<0497:RPICCA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rottner, D. L., L. Vardiman, and J. A. Moore, 1980: Reanalysis of “Generalized criteria for seeding winter orographic clouds.” J. Appl. Meteor., 19, 622626, doi:10.1175/1520-0450(1980)019<0622:ROCFSW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 10151057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Schaefer, V. J., 1946: The production of ice crystals in a cloud of supercooled water droplets. Science, 104, 457459, doi:10.1126/science.104.2707.457.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., 2004: Evaluating mesoscale NWP models using kinetic energy spectra. Mon. Wea. Rev., 132, 30193032, doi:10.1175/MWR2830.1.

    • Search Google Scholar
    • Export Citation
  • Skamarock, W. C., and Coauthors, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Springer, 666 pp.

  • Super, A. B., and J. A. Heimbach Jr., 1983: Evaluation of the Bridger Range winter cloud seeding experiment using control gages. J. Appl. Meteor., 22, 19892011, doi:10.1175/1520-0450(1983)022<1989:EOTBRW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Super, A. B., and B. A. Boe, 1988: Microphysical effects of wintertime cloud seeding with silver iodide over the Rocky Mountains. Part III: Observations over the Grand Mesa, Colorado. J. Appl. Meteor., 27, 11661182, doi:10.1175/1520-0450(1988)027<1166:MEOWCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Super, A. B., and J. A. Heimbach Jr., 1988: Microphysical effects of wintertime cloud seeding with silver iodide over the Rocky Mountains. Part II: Observations over the Bridger Range, Montana. J. Appl. Meteor., 27, 11531165, doi:10.1175/1520-0450(1988)027<1152:MEOWCS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., R. Rasmussen, and K. Manning, 2004: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis. Mon. Wea. Rev., 132, 519542, doi:10.1175/1520-0493(2004)132<0519:EFOWPU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Thompson, G., P. R. Field, W. R. Hall, and R. Rasmussen, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 50955115, doi:10.1175/2008MWR2387.1.

    • Search Google Scholar
    • Export Citation
  • Turner, B. D., 1994: Workbook of Atmospheric Dispersion Estimates: An Introduction to Dispersion Modeling.Lewis, 293 pp.

  • Uchida, T., and Y. Ohya, 2003: Large-eddy simulation of turbulent airflow over complex terrain. J. Wind Eng. Ind. Aerodyn., 91, 219229, doi:10.1016/S0167-6105(02)00347-1.

    • Search Google Scholar
    • Export Citation
  • Vardiman, L., and J. A. Moore, 1978: Generalized criteria for seeding winter orographic clouds. J. Appl. Meteor., 17, 17691777, doi:10.1175/1520-0450(1978)017<1769:GCFSWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Vonnegut, B., 1947: The nucleation of ice formation by silver iodide. J. Appl. Phys., 18, 593595, doi:10.1063/1.1697813.

  • Warburton, J. A., L. G. Young, and R. H. Stone, 1995: Assessment of seeding effects in snowpack augmentation programs: Ice nucleation and scavenging of seeding aerosols. J. Appl. Meteor., 34, 121130, doi:10.1175/1520-0450-34.1.121.

    • Search Google Scholar
    • Export Citation
  • Weigel, A. P., F. K. Chow, M. W. Rotach, R. L. Street, and M. Xue, 2006: High-resolution large-eddy simulations of flow in a steep alpine valley. Part II: Flow structure and heat budgets. J. Appl. Meteor. Climatol., 45, 87107, doi:10.1175/JAM2323.1.

    • Search Google Scholar
    • Export Citation
  • Weigel, A. P., F. K. Chow, and M. W. Rotach, 2007: On the nature of turbulent kinetic energy in a steep and narrow Alpine valley. Bound.-Layer Meteor., 123, 177199, doi:10.1007/s10546-006-9142-9.

    • Search Google Scholar
    • Export Citation
  • Wyngaard, J. C., 2004: Toward numerical modeling in the “terra incognita.” J. Atmos. Sci., 61, 18161826, doi:10.1175/1520-0469(2004)061<1816:TNMITT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xue, L., A. Teller, R. M. Rasmussen, I. Geresdi, and Z. Pan, 2010: Effects of aerosol solubility and regeneration on warm-phase orographic clouds and precipitation simulated by a detailed bin microphysical scheme. J. Atmos. Sci., 67, 33363354, doi:10.1175/2010JAS3511.1.

    • Search Google Scholar
    • Export Citation
  • Xue, L., A. Teller, R. M. Rasmussen, I. Geresdi, Z. Pan, and X. Liu, 2012: Effects of aerosol solubility and regeneration on mixed-phase orographic clouds and precipitation. J. Atmos. Sci., 69, 19942010, doi:10.1175/JAS-D-11-098.1.

    • Search Google Scholar
    • Export Citation
  • Xue, L., S. Tessendorf, E. Nelson, R. Rasmussen, D. Breed, S. Parkinson, P. Holbrook, and D. Blestrud, 2013a: Implementation of a silver iodide cloud-seeding parameterization in WRF. Part II: 3D real case simulations and sensitivity tests. J. Appl. Meteor. Climatol., 52, 14581476, doi:10.1175/JAMC-D-12-0149.1.

    • Search Google Scholar
    • Export Citation
  • Xue, L., and Coauthors, 2013b: Implementation of a silver iodide cloud-seeding parameterization in WRF. Part I: Model description and idealized 2D sensitivity tests. J. Appl. Meteor. Climatol., 52, 14331457, doi:10.1175/JAMC-D-12-0148.1.

    • Search Google Scholar
    • Export Citation
  • Xue, L., X. Chu, R. Rasmussen, D. Breed, B. Boe, and B. Geerts, 2014: The dispersion of silver iodide particles from ground-based generators over complex terrain. Part II: WRF large-eddy simulations versus observations. J. Appl. Meteor. Climatol., 53, 13421361, doi:10.1175/JAMC-D-13-0241.1.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 3593 1584 83
PDF Downloads 753 110 7