Abstract
Several Weather Research and Forecasting (WRF) Model simulations of natural and seeded clouds have been conducted in non-LES and LES (large-eddy simulation) modes to investigate the seeding impact on wintertime orographic clouds for an actual seeding case on 18 February 2009 in the Medicine Bow Mountains of Wyoming. Part I of this two-part series has shown the capability of WRF LES with 100-m grid spacing to capture the essential environmental conditions by comparing the model results with measurements from a variety of instruments. In this paper, the silver iodide (AgI) dispersion features, the AgI impacts on the turbulent kinetic energy (TKE), the microphysics, and the precipitation are examined in detail using the model data, which leads to five main results. 1) The vertical dispersion of AgI particles is more efficient in cloudy conditions than in clear conditions. 2) The wind shear and the buoyancy are both important TKE production mechanisms in the wintertime PBL over complex terrain in cloudy conditions. The buoyancy-induced eddies are more responsible for the AgI vertical dispersion than the shear-induced eddies are. 3) Seeding has insignificant effects on the cloud dynamics. 4) AgI particles released from the ground-based generators affect the cloud within the boundary layer below 1 km AGL through nucleating extra ice crystals, converting liquid water into ice, depleting more vapor, and generating more precipitation on the ground. The AgI nucleation rate is inversely related to the natural ice nucleation rate. 5) The seeding effects on the ground precipitation are confined within narrow areas. The relative seeding effect ranges between 5% and 20% for the simulations with different grid spacing.
The National Center for Atmospheric Research is sponsored by the National Science Foundation.