A Few GIS Clarifications on Tornado Density Mapping

Yongxin Deng Department of Geography, Western Illinois University, Macomb, Illinois

Search for other papers by Yongxin Deng in
Current site
Google Scholar
PubMed
Close
,
Brendan Wallace Department of Geography, Western Illinois University, Macomb, Illinois

Search for other papers by Brendan Wallace in
Current site
Google Scholar
PubMed
Close
,
Derek Maassen Department of Geography, Western Illinois University, Macomb, Illinois

Search for other papers by Derek Maassen in
Current site
Google Scholar
PubMed
Close
, and
Johnathan Werner Department of Computer Science, Western Illinois University, Macomb, Illinois

Search for other papers by Johnathan Werner in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A geographical information system (GIS) perspective is taken to examine conceptual and methodological complications present in tornado density and probability mapping. Tornado density is defined as the inverse-distance-weighted count of tornado touchdown points or tornado-affected cells within a neighborhood area. The paper first adds a few geographic elements into the tornado definition and then characterizes tornado density as a density field in GIS that depends on predefined, modifiable areas to exist. Tornado density is therefore conceptually distinguished from both individual tornadoes and tornado probability. Three factors are identified to be vital in tornado density mapping: the neighborhood size, the distance decay function, and the choice of tornado properties. Correspondingly, 12 neighborhood sizes ranging from 20 to 360 km are tested, four distance decay functions are compared, and two tornado properties—tornado touchdown locations and pathlengths—are separately incorporated in mapping. GIS interpretations, clarifications, and demonstrations are provided for these factors to reach a thorough understanding of how the factors function and affect the resultant tornado density maps. Historical tornado data of the eastern half of the United States from 1973 to 2013 are used in these demonstrations. Uncertainty and propagation analyses are recommended for future tornado density and probability mapping, and a Monte Carlo simulation using tornado pathlength data is conducted as an example of uncertainty modeling. In all, tornado density mapping is diagnosed as a largely subjective activity, and the mapper needs to make multiple choices according to the mapping purpose, scale, and the involved tornado record data.

Corresponding author address: Yongxin Deng, Dept. of Geography, Western Illinois University, 1 University Circle, Macomb, IL 61455. E-mail: y-deng2@wiu.edu

Abstract

A geographical information system (GIS) perspective is taken to examine conceptual and methodological complications present in tornado density and probability mapping. Tornado density is defined as the inverse-distance-weighted count of tornado touchdown points or tornado-affected cells within a neighborhood area. The paper first adds a few geographic elements into the tornado definition and then characterizes tornado density as a density field in GIS that depends on predefined, modifiable areas to exist. Tornado density is therefore conceptually distinguished from both individual tornadoes and tornado probability. Three factors are identified to be vital in tornado density mapping: the neighborhood size, the distance decay function, and the choice of tornado properties. Correspondingly, 12 neighborhood sizes ranging from 20 to 360 km are tested, four distance decay functions are compared, and two tornado properties—tornado touchdown locations and pathlengths—are separately incorporated in mapping. GIS interpretations, clarifications, and demonstrations are provided for these factors to reach a thorough understanding of how the factors function and affect the resultant tornado density maps. Historical tornado data of the eastern half of the United States from 1973 to 2013 are used in these demonstrations. Uncertainty and propagation analyses are recommended for future tornado density and probability mapping, and a Monte Carlo simulation using tornado pathlength data is conducted as an example of uncertainty modeling. In all, tornado density mapping is diagnosed as a largely subjective activity, and the mapper needs to make multiple choices according to the mapping purpose, scale, and the involved tornado record data.

Corresponding author address: Yongxin Deng, Dept. of Geography, Western Illinois University, 1 University Circle, Macomb, IL 61455. E-mail: y-deng2@wiu.edu
Save
  • American Meteorological Society, 2015: “Tornado.” Glossary of Meteorology. [Available online at http://glossary.ametsoc.org/wiki/Tornado.]

  • Ashley, W., 2007: Spatial and temporal analysis of tornado fatalities in the United States: 1880–2005. Wea. Forecasting, 22, 12141228, doi:10.1175/2007WAF2007004.1.

    • Search Google Scholar
    • Export Citation
  • Bian, L., 2007: Object-oriented representation of environmental phenomena: Is everything best represented as an object? Ann. Assoc. Amer. Geogr., 97, 267281, doi:10.1111/j.1467-8306.2007.00535.x.

    • Search Google Scholar
    • Export Citation
  • Boruff, B. J., J. A. Easoz, S. D. Jones, H. R. Landry, J. D. Mitchem, and S. L. Cutter, 2003: Tornado hazards in the United States. Climate Res., 24, 103117, doi:10.3354/cr024103.

    • Search Google Scholar
    • Export Citation
  • Brooks, H. E., C. A. Doswell, and M. P. Kay, 2003: Climatological estimates of local daily tornado probability for the United States. Wea. Forecasting, 18, 626640, doi:10.1175/1520-0434(2003)018<0626:CEOLDT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Broyles, J. C., and K. C. Crosbie, 2004: Evidence of smaller tornado alleys across the United States based on a long track F3–F5 tornado climatology study from 1880–2003. 22nd Conf. Severe Local Storms, Hyannis, MA, Amer. Meteor. Soc., P5.6. [Available online at https://ams.confex.com/ams/11aram22sls/techprogram/paper_81872.htm.]

  • Coleman, T. A., and P. G. Dixon, 2014: An objective analysis of tornado risk in the United States. Wea. Forecasting, 29, 366376, doi:10.1175/WAF-D-13-00057.1.

    • Search Google Scholar
    • Export Citation
  • Concannon, P. R., H. E. Brooks, and C. A. Doswell III, 2000: Climatological risk of strong and violent tornadoes in the United States. Preprints, Second Symp. on Environmental Applications, Long Beach, CA, Amer. Meteor. Soc., 9.4. [Available online at http://ams.confex.com/ams/annual2000/techprogram/paper_6471.htm.]

  • Dixon, P. G., and A. E. Mercer, 2012: Reply to “Comments on ‘Tornado risk analysis: Is Dixie Alley an extension of Tornado Alley?’” Bull. Amer. Meteor. Soc., 93, 408410, doi:10.1175/BAMS-D-11-00219.1.

    • Search Google Scholar
    • Export Citation
  • Dixon, P. G., A. E. Mercer, J. Choi, and J. S. Allen, 2011: Tornado risk analysis: Is Dixie Alley an extension of Tornado Alley? Bull. Amer. Meteor. Soc., 92, 433441, doi:10.1175/2010BAMS3102.1.

    • Search Google Scholar
    • Export Citation
  • Dixon, P. G., A. E. Mercer, K. Grala, and W. H. Cooke, 2014: Objective identification of tornado seasons and ideal spatial smoothing radii. Earth Interact., 18, doi:10.1175/2013EI000559.1.

    • Search Google Scholar
    • Export Citation
  • Doswell, C. A., H. E. Brooks, and M. P. Kay, 2005: Climatological estimates of daily nontornadic severe thunderstorm probability for the United States. Wea. Forecasting, 20, 577595, doi:10.1175/WAF866.1.

    • Search Google Scholar
    • Export Citation
  • Elsner, J. B., L. E. Michaels, K. N. Scheitlin, and I. J. Elsner, 2013: The decreasing population bias in tornado reports across the Central Plains. Wea. Climate Soc., 5, 221232, doi:10.1175/WCAS-D-12-00040.1.

    • Search Google Scholar
    • Export Citation
  • Franke, R., 1982: Scattered data interpolation: Tests of some methods. Math. Comput., 38, 181200.

  • Goodchild, M. F., M. Yuan, and T. J. Cova, 2007: Towards a general theory of geographic representation in GIS. Int. J. Geogr. Inf. Sci., 21, 239260, doi:10.1080/13658810600965271.

    • Search Google Scholar
    • Export Citation
  • Heuvelink, G. B. M., 1998: Error Propagation in Environmental Modelling with GIS. Taylor and Francis, 146 pp.

  • Jelinski, D. E., and J. Wu, 1996: The modifiable areal unit problem and implications for landscape ecology. Landscape Ecol., 11, 129140, doi:10.1007/BF02447512.

    • Search Google Scholar
    • Export Citation
  • Kelly, D. L., J. T. Schaefer, R. P. McNulty, C. A. Doswell III, and R. F. Abbey Jr., 1978: An augmented tornado climatology. Mon. Wea. Rev., 106, 11721183, doi:10.1175/1520-0493(1978)106<1172:AATC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Marsh, P. T., and H. E. Brooks, 2012: Comments on “Tornado risk analysis: Is Dixie Alley an extension of Tornado Alley?” Bull. Amer. Meteor. Soc., 93, 405407, doi:10.1175/BAMS-D-11-00200.1.

    • Search Google Scholar
    • Export Citation
  • Meyer, C. L., H. E. Brooks, and M. P. Kay, 2002: A hazard model for tornado occurrence in the United States. 16th Conf. on Probability and Statistics, Orlando, FL, Amer. Meteor. Soc., J3.6. [Available online at https://ams.confex.com/ams/annual2002/techprogram/paper_27595.htm.]

  • Mitas, L., and H. Mitasova, 1999: Spatial interpolation. Geographical Information Systems: Principles, Techniques, Management and Applications. P. Longley et al., Eds., Wiley, 481–492.

    • Search Google Scholar
    • Export Citation
  • Openshaw, S., 1984: The Modifiable Areal Unit Problem. Geo Books, 40 pp.

  • Paul, F., 2001: A developing inventory of tornadoes in France. Atmos. Res., 56, 269280, doi:10.1016/S0169-8095(00)00077-6.

  • Ray, P. S., P. Bieringer, X. Niu, and B. Whissel, 2003: An improved estimate of tornado occurrence in the Central Plains of the United States. Mon. Wea. Rev., 131, 10261031, doi:10.1175/1520-0493(2003)131<1026:AIEOTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schaefer, J. T., D. L. Kelly, and R. F. Abbey Jr., 1986: A minimum assumption tornado-hazard probability model. J. Climate Appl. Meteor., 25, 19341945, doi:10.1175/1520-0450(1986)025<1934:AMATHP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Silverman, B. W., 1986: Density Estimation for Statistics and Data Analysis.Chapman and Hall, 176 pp.

  • Smith, B. T., R. L. Thompson, J. S. Grams, C. Broyles, and H. E. Brooks, 2012: Convective modes for significant severe thunderstorms in the contiguous United States. Part I: Storm classification and climatology. Wea. Forecasting, 27, 11141135, doi:10.1175/WAF-D-11-00115.1.

    • Search Google Scholar
    • Export Citation
  • Standohar-Alfano, C. D., and J. van de Lindt, 2014: Empirically based probabilistic tornado hazard analysis of the United States using 1973–2011 data. Nat. Hazards Rev., 16, 04014013, doi:10.1061/(ASCE)NH.1527-6996.0000138.

    • Search Google Scholar
    • Export Citation
  • Thom, H. C. S., 1963: Tornado probabilities. Mon. Wea. Rev., 91, 730736, doi:10.1175/1520-0493(1963)091<0730:TP>2.3.CO;2.

  • Tyrrell, J., 2003: A tornado climatology for Ireland. Atmos. Res., 67–68, 671684, doi:10.1016/S0169-8095(03)00080-2.

  • Verbout, S. M., H. E. Brooks, L. M. Leslie, and D. M. Schultz, 2006: Evolution of the U.S. tornado database: 1954–2003. Wea. Forecasting, 21, 8693, doi:10.1175/WAF910.1.

    • Search Google Scholar
    • Export Citation
  • Widen, H. M., T. Fricker, and J. B. Elsner, 2015: New methods in tornado climatology. Geogr. Compass, 9, 157168, doi:10.1111/gec3.12205.

    • Search Google Scholar
    • Export Citation
  • Yamada, I., and P. A. Rogerson, 2003: An empirical comparison of edge effect correction methods applied to K-function analysis. Geogr. Anal., 35, 97109, doi:10.1111/j.1538-4632.2003.tb01103.x.

    • Search Google Scholar
    • Export Citation
  • Yuan, M., 1998: Representing spatiotemporal processes to support knowledge discovery in GIS databases. Proceedings of the 8th International Symposium on Spatial Data Handling, T. K. Poiker and N. Chrisman, Eds., International Geographic Union, 431440.

  • Yuan, M., M. Dickens-Micozzi, and M. A. Magsig, 2002: Analysis of tornado damage tracks from the 3 May tornado outbreak using multispectral satellite imagery. Wea. Forecasting, 17, 382398, doi:10.1175/1520-0434(2002)017<0382:AOTDTF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2926 1376 32
PDF Downloads 1433 148 10