Use of X-Band Differential Reflectivity Measurements to Study Shallow Arctic Mixed-Phase Clouds

Mariko Oue Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Mariko Oue in
Current site
Google Scholar
PubMed
Close
,
Michele Galletti Biological, Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, New York

Search for other papers by Michele Galletti in
Current site
Google Scholar
PubMed
Close
,
Johannes Verlinde Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Johannes Verlinde in
Current site
Google Scholar
PubMed
Close
,
Alexander Ryzhkov Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma and National Severe Storms Laboratory, Norman, Oklahoma

Search for other papers by Alexander Ryzhkov in
Current site
Google Scholar
PubMed
Close
, and
Yinghui Lu Department of Meteorology, The Pennsylvania State University, University Park, Pennsylvania

Search for other papers by Yinghui Lu in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Microphysical processes in shallow Arctic precipitation clouds are illustrated using measurements of differential reflectivity ZDR from the U.S. Department of Energy Atmospheric Radiation Measurement Program polarimetric X-band radar deployed in Barrow, Alaska. X-band hemispheric range height indicator scans used in conjunction with Ka-band radar and lidar measurements revealed prolonged periods dominated by vapor depositional, riming, and/or aggregation growth. In each case, ice precipitation fell through at least one liquid-cloud layer in a seeder–feeder situation before reaching the surface. A long period of sustained low radar reflectivity ZH (<0–5 dBZ) and high ZDR (6–7.5 dB) throughout the depth of the cloud and subcloud layer, coinciding with observations of large pristine dendrites at the surface, suggests vapor depositional growth of large dendrites at low number concentrations. In contrast, ZDR values decreased to 2–3 dB in the mean profile when surface precipitation was dominated by aggregates or rimed dendrites. Small but consistent differences in zenith Ka-band radar Doppler velocity and lidar depolarization measurements were found between aggregation- and riming-dominated periods. The clean Arctic environment can enhance ZDR signals relative to more complex midlatitude cases, producing higher values.

Corresponding author address: Mariko Oue, Department of Meteorology, The Pennsylvania State University, 503 Walker Bldg., University Park, PA 16802. E-mail: muo15@psu.edu

Abstract

Microphysical processes in shallow Arctic precipitation clouds are illustrated using measurements of differential reflectivity ZDR from the U.S. Department of Energy Atmospheric Radiation Measurement Program polarimetric X-band radar deployed in Barrow, Alaska. X-band hemispheric range height indicator scans used in conjunction with Ka-band radar and lidar measurements revealed prolonged periods dominated by vapor depositional, riming, and/or aggregation growth. In each case, ice precipitation fell through at least one liquid-cloud layer in a seeder–feeder situation before reaching the surface. A long period of sustained low radar reflectivity ZH (<0–5 dBZ) and high ZDR (6–7.5 dB) throughout the depth of the cloud and subcloud layer, coinciding with observations of large pristine dendrites at the surface, suggests vapor depositional growth of large dendrites at low number concentrations. In contrast, ZDR values decreased to 2–3 dB in the mean profile when surface precipitation was dominated by aggregates or rimed dendrites. Small but consistent differences in zenith Ka-band radar Doppler velocity and lidar depolarization measurements were found between aggregation- and riming-dominated periods. The clean Arctic environment can enhance ZDR signals relative to more complex midlatitude cases, producing higher values.

Corresponding author address: Mariko Oue, Department of Meteorology, The Pennsylvania State University, 503 Walker Bldg., University Park, PA 16802. E-mail: muo15@psu.edu
Save
  • Andrić, J., M. R. Kumjian, D. Zrnić, J. M. Straka, and V. Melnikov, 2013: Polarimetric signatures above the melting layer in winter storms: An observational and modeling study. J. Appl. Meteor. Climatol., 52, 682700, doi:10.1175/JAMC-D-12-028.1.

    • Search Google Scholar
    • Export Citation
  • Avramov, A., and Coauthors, 2011: Toward ice formation closure in Arctic mixed-phase boundary layer clouds during ISDAC. J. Geophys. Res., 116, D00T08, doi:10.1029/2011JD015910.

    • Search Google Scholar
    • Export Citation
  • Aydin, K., and C. Tang, 1997: Millimeter wave radar scattering from model ice crystal distributions. IEEE Trans. Geosci. Remote Sens., 35, 140146, doi:10.1109/36.551942.

    • Search Google Scholar
    • Export Citation
  • Bailey, M. P., and J. Hallett, 2009: A comprehensive habit diagram for atmospheric ice crystals: Confirmation from the laboratory, AIRS II, and other fields. J. Atmos. Sci., 66, 28882899, doi:10.1175/2009JAS2883.1.

    • Search Google Scholar
    • Export Citation
  • Bechini, R., L. Baldini, and V. Chandrasekar, 2013: Polarimetric radar observations in the ice region of precipitating clouds at C-band and X-band radar frequencies. J. Appl. Meteor. Climatol., 52, 11471169, doi:10.1175/JAMC-D-12-055.1.

    • Search Google Scholar
    • Export Citation
  • Bharadwaj, N., K. B. Widener, K. L. Johnson, S. Collis, and A. Koontz, 2011: ARM radar infrastructure for global and regional climate study. Proc. 35th Conf. on Radar Meteorology, Pittsburgh, PA, Amer. Meteor. Soc., 16B.4. [Available online at https://ams.confex.com/ams/35Radar/webprogram/Paper191707.html.]

  • Bigg, E. K., 1996: Ice forming nuclei in the high Arctic. Tellus, 48B, 223233, doi:10.1034/j.1600-0889.1996.t01-1-00007.x.

  • Botta, G., K. Aydin, J. Verlinde, A. E. Avramov, A. S. Ackerman, A. M. Fridlind, G. M. McFarquhar, and M. Wolde, 2011: Milimeter wave scattering from ice crystals and their aggregates: Comparing cloud model simulations with X- and Ka-band radar measurements. J. Geophys. Res., 116, D00T04, doi:10.1029/2011JD015909.

    • Search Google Scholar
    • Export Citation
  • Botta, G., K. Aydin, and J. Verlinde, 2013: Variability in millimeter wave scattering properties of dendritic ice crystals. J. Quant. Spectrosc. Radiat. Transfer, 131, 105114, doi:10.1016/j.jqsrt.2013.05.009.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., and V. Chandrasekar, 2001: Polarimetric Doppler Weather Radar: Principles and Applications. Cambridge University Press, 636 pp.

    • Search Google Scholar
    • Export Citation
  • Bringi, V. N., T. A. Seliga, and S. M. Cherry, 1983: Statistical properties of the dual-polarization differential reflectivity (ZDR) radar signal. IEEE Trans. Geosci. Remote Sens., GE-21, 215220, doi:10.1109/TGRS.1983.350491.

    • Search Google Scholar
    • Export Citation
  • Cadeddu, M. P., D. D. Turner, and J. C. Liljegren, 2009: A neural network for real-time retrievals of PWV and LWP from Arctic millimeter-wave ground-based observations. IEEE Trans. Geosci. Remote Sens., 47, 18871900, doi:10.1109/TGRS.2009.2013205.

    • Search Google Scholar
    • Export Citation
  • Curry, J. A., W. B. Rossow, D. Randall, and J. L. Schramm, 1996: Overview of Arctic clouds and radiation characteristics. J. Climatol., 9, 17311764, doi:10.1175/1520-0442(1996)009<1731:OOACAR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • de Boer, G., E. W. Eloranta, and M. D. Shupe, 2009: Arctic mixed-phase stratiform cloud properties from multiple years of surface-based measurements at two high-latitude locations. J. Atmos. Sci., 66, 28742887, doi:10.1175/2009JAS3029.1.

    • Search Google Scholar
    • Export Citation
  • Dolan, B., and D. A. Rutledge, 2009: A theory-based hydrometeor identification algorithm for X-band polarimetric radars. J. Atmos. Oceanic Technol., 26, 20712088, doi:10.1175/2009JTECHA1208.1.

    • Search Google Scholar
    • Export Citation
  • Doviak, R. J., and D. S. Zrnić, 1993: Doppler Radar and Weather Observations. Dover Publications, 562 pp.

  • Eloranta, E. W., 2005: High spectral resolution lidar. Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere, C. Weitkamp, Ed., Springer-Verlag, 143–163.

  • Fountain, A. G., and T. Ohtake, 1985: Concentrations and source areas of ice nuclei in the Alaskan atmosphere. J. Climate Appl. Meteor., 24, 377382, doi:10.1175/1520-0450(1985)024<0377:CASAOI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gourley, J. J., P. Tabary, and J. P. du Chatelet, 2006: Data quality of the Meteo-France C-band polarimetric radar. J. Atmos. Oceanic Technol., 23, 13401356, doi:10.1175/JTECH1912.1.

    • Search Google Scholar
    • Export Citation
  • Hall, M. P. M., J. W. F. Goddard, and S. M. Cherry, 1984: Identification of hydrometeors and other targets by dual-polarization radar. Radio Sci., 19, 132140, doi:10.1029/RS019i001p00132.

    • Search Google Scholar
    • Export Citation
  • Hobbs, P. V., and A. L. Rangno, 1998: Microstructures of low and middle-level clouds over the Beaufort Sea. Quart. J. Roy. Meteor. Soc., 124, 20352071, doi:10.1002/qj.49712455012.

    • Search Google Scholar
    • Export Citation
  • Hubbert, J. C., and V. N. Bringi, 1995: An iterative filtering technique for the analysis of copolar differential phase and dual-frequency radar measurements. J. Atmos. Oceanic Technol., 12, 643648, doi:10.1175/1520-0426(1995)012<0643:AIFTFT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Intrieri, J. M., M. D. Shupe, T. Uttal, and B. J. McCarty, 2002: An annual cycle of Arctic cloud characteristics observed by radar and lidar at SHEBA. J. Geophys. Res., 107, 8030, doi:10.1029/2000JC000423.

    • Search Google Scholar
    • Export Citation
  • Jameson, A. R., 1989: The interpretation and meteorological application of radar backscatter amplitude ratios at linear polarizations. J. Atmos. Oceanic Technol., 6, 908919, doi:10.1175/1520-0426(1989)006<0908:TIAMAO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Jayaweera, K., and T. Ohtake, 1973: Concentration of ice crystals in Arctic stratus clouds. J. Rech. Atmos., 7, 199–207.

  • Kajikawa, M., 1989: Observation of the falling motion of early snowflakes. Part II: On the variation of falling velocity. J. Meteor. Soc. Japan, 67, 731738.

    • Search Google Scholar
    • Export Citation
  • Kennedy, P. C., and S. A. Rutledge, 2011: S-band dual-polarization radar observations of winter storms. J. Appl. Meteor. Climatol., 50, 844858, doi:10.1175/2010JAMC2558.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., A. V. Ryzhkov, H. D. Reeves, and T. J. Schuur, 2013: Dual-polarization radar observations of hydrometeor refreezing in winter storms. J. Appl. Meteor. Climatol., 52, 25492566, doi:10.1175/JAMC-D-12-0311.1.

    • Search Google Scholar
    • Export Citation
  • Kumjian, M. R., S. A. Rutledge, R. M. Rasmussen, P. C. Kennedy, and M. Dixon, 2014: High-resolution polarimetric radar observations of snow generating cells. J. Appl. Meteor. Climatol., 53, 16361658, doi:10.1175/JAMC-D-13-0312.1.

    • Search Google Scholar
    • Export Citation
  • Liljegren, J. C., E. E. Clothiaux, G. G. Mace, S. Kato, and X. Dong, 2001: A new retrieval for cloud liquid water path using a ground-based microwave radiometer and measurements of cloud temperature. J. Geophys. Res., 106, 14 48514 500, doi:10.1029/2000JD900817.

    • Search Google Scholar
    • Export Citation
  • Liu, H., and V. Chandrasekar, 2000: Classification of hydrometeors based on polarimetric radar measurements: Development of fuzzy logic and neuro-fuzzy systems, and in situ verification. J. Atmos. Oceanic Technol., 17, 140164, doi:10.1175/1520-0426(2000)017<0140:COHBOP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Locatelli, J. D., and P. V. Hobbs, 1974: Fall speeds and masses of solid precipitation particles. J. Geophys. Res., 79, 21852197, doi:10.1029/JC079i015p02185.

    • Search Google Scholar
    • Export Citation
  • Lu, Y., E. E. Clothiaux, K. Aydin, and J. Verlinde, 2014: Dielectric constant adjustments in computations of the scattering properties of solid ice crystals using the Generalized Multi-particle Mie method. J. Quant. Spectrosc. Radiat. Transfer, 135, 18, doi:10.1016/j.jqsrt.2013.12.005.

    • Search Google Scholar
    • Export Citation
  • Magono, C., and C. W. Lee, 1966: Meteorological classification of natural snow crystals. J. Fac. Sci. Hokkaido Univ., Ser. VII, 2, 321335.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., 1991: Theoretical study of radar polarization parameters obtained from cirrus clouds. J. Atmos. Sci., 48, 1062–1070, doi:10.1175/1520-0469(1991)048<1062:TSORPP>2.0.CO;2.

  • Matrosov, S. Y., 2007: Modeling backscatter properties of snowfall at millimeter wavelengths. J. Atmos. Sci., 64, 17271736, doi:10.1175/JAS3904.1.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. F. Reinking, R. A. Kropfli, B. E. Martner, and B. W. Bartram, 2001: On the use of radar depolarization ratios for estimating shapes of ice hydrometeors in winter clouds. J. Appl. Meteor., 40, 479490, doi:10.1175/1520-0450(2001)040<0479:OTUORD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Matrosov, S. Y., R. F. Reinking, and I. V. Djalalova, 2005: Inferring fall attitudes of pristine dendritic crystals from polarimetric radar data. J. Atmos. Sci., 62, 241250, doi:10.1175/JAS-3356.1.

    • Search Google Scholar
    • Export Citation
  • McFarquhar, G. M., G. Zhang, M. R. Poellot, G. L. Kok, R. McCoy, T. Tooman, A. Fridlind, and A. J. Heymsfield, 2007: Ice properties of single-layer stratocumulus during the Mixed-Phase Arctic Cloud Experiment: 1. Observations. J. Geophys. Res., 112, D24201, doi:10.1029/2007JD008633.

    • Search Google Scholar
    • Export Citation
  • Mitchell, D. L., R. Zhang, and R. L. Pitter, 1990: Mass-dimensional relationships for ice particles and the influence of riming on snowfall rates. J. Appl. Meteor., 29, 153163, doi:10.1175/1520-0450(1990)029<0153:MDRFIP>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., P. Zuidema, G. M. McFarquhar, A. Bansemer, and A. J. Heymsfield, 2011: Snow microphysical observations in shallow mixed-phase and deep frontal Arctic cloud systems. Quart. J. Roy. Meteor. Soc., 137, 15891601, doi:10.1002/qj.840.

    • Search Google Scholar
    • Export Citation
  • Morrison, H., G. Boer, G. Feingold, J. Harrington, M. D. Shupe, and K. Sulia, 2012: Resilience of persistent Arctic mixed-phase clouds. Nat. Geosci., 5, 1117, doi:10.1038/ngeo1332.

    • Search Google Scholar
    • Export Citation
  • Oue, M., M. R. Kumjian, Y. Lu, Z. Jiang, E. E. Clothiaux, J. Verlinde, and K. Aydin, 2015: X-band polarimetric and Ka-band Doppler spectral radar observations of a graupel-producing Arctic mixed-phase cloud. J. Appl. Meteor. Climatol, 54, 13351351, doi:10.1175/JAMC-D-14-0315.1.

    • Search Google Scholar
    • Export Citation
  • Park, H. S., A. V. Ryzhkov, D. S. Zrnić, and K.-E. Kim, 2009: The hydrometeor classification algorithm for the polarimetric WSR-88D: Description and application to an MCS. Wea. Forecasting, 24, 730748, doi:10.1175/2008WAF2222205.1.

    • Search Google Scholar
    • Export Citation
  • Pinto, J. O., J. A. Curry, and J. M. Intrieri, 2001: Cloud–aerosol interactions during autumn over Beaufort Sea. J. Geophys. Res., 106, 15 07715 097, doi:10.1029/2000JD900267.

    • Search Google Scholar
    • Export Citation
  • Platt, C. M. R., 1978: Lidar backscatter from horizontal ice crystal plates. J. Appl. Meteor., 17, 482488, doi:10.1175/1520-0450(1978)017<0482:LBFHIC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Prenni, A. J., P. Demott, D. C. Rogers, A. M. Kreidenweis, G. M. McFarquhar, G. Zhang, and M. R. Poellot, 2009: Ice nuclei characteristics from M-PACE and their relation to ice formation in clouds. Tellus, 61B, 436448, doi:10.1111/j.1600-0889.2009.00415.x.

    • Search Google Scholar
    • Export Citation
  • Radke, L. F., P. V. Hobbs, and J. E. Pinnons, 1976: Observations of cloud condensation nuclei, sodium-containing particles, ice nuclei and the light-scattering coefficient near Barrow, Alaska. J. Appl. Meteor., 15, 982995, doi:10.1175/1520-0450(1976)015<0982:OOCCNS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., and D. S. Zrnić, 1998: Discrimination between rain and snow with a polarimetric radar. J. Appl. Meteor., 37, 12281240, doi:10.1175/1520-0450(1998)037<1228:DBRASW>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., S. E. Giangrande, V. M. Melnikov, and T. J. Schuur, 2005: Calibration issues of dual-polarization radar measurements. J. Atmos. Oceanic Technol., 22, 11381155, doi:10.1175/JTECH1772.1.

    • Search Google Scholar
    • Export Citation
  • Ryzhkov, A. V., P. Zhang, H. D. Reeves, M. R. Kumjian, T. Tschallener, S. Troemel, and C. Simmer, 2016: Quasi-vertical profiles—A new way to look at polarimetric radar data. J. Atmos. Oceanic Technol., doi:10.1175/JTECH-D-15-0020.1, in press.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., 1991: The polarization lidar technique for cloud research: A review and current assessment. Bull. Amer. Meteor. Soc., 72, 18481866, doi:10.1175/1520-0477(1991)072<1848:TPLTFC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sassen, K., and S. Benson, 2001: A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part II: Microphysical properties derived from lidar depolarization. J. Atmos. Sci., 58, 21032112, doi:10.1175/1520-0469(2001)058<2103:AMCCCF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Schneebeli, M., N. Dawes, M. Lehning, and A. Berne, 2013: High-resolution vertical profiles of X-band polarimetric radar observables during snowfall in the Swiss Alps. J. Appl. Meteor. Climatol., 52, 378394, doi:10.1175/JAMC-D-12-015.1.

    • Search Google Scholar
    • Export Citation
  • Schrom, R. S., M. R. Kumjian, and Y. Lu, 2015: Polarimetric radar signatures of dendritic growth zones within Colorado winter storms. J. Appl. Meteor. Climatol., 54, 23652388, doi:10.1175/JAMC-D-15-0004.1.

    • Search Google Scholar
    • Export Citation
  • Schuur, T., A. Ryzhkov, D. Forsyth, and H. Reeves, 2012: Precipitation observations with NSSL’s X-band polarimetric radar during the SNOW-V10 campaign. Pure Appl. Geophys., 171, 95–112, doi:10.1007/s00024-012-0569-2.

    • Search Google Scholar
    • Export Citation
  • Sedlar, J., and M. D. Shupe, 2014: Characteristic nature of vertical motions observed in Arctic mixed-phase stratocumulus. Atmos. Chem. Phys., 14, 34613478, doi:10.5194/acp-14-3461-2014.

    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., and V. N. Bringi, 1976: Potential use of radar differential reflectivity measurements at orthogonal polarizations for measuring precipitation. J. Appl. Meteor., 15, 6976, doi:10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Seliga, T. A., V. N. Bringi, and H. H. Al-Khatib, 1981: A preliminary study of comparative measurements of rainfall rate using the differential reflectivity radar technique and a raingage network. J. Appl. Meteor., 20, 13621368, doi:10.1175/1520-0450(1981)020<1362:APSOCM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., P. Kollias, S. Y. Matrosov, and T. L. Schneider, 2004: Deriving mixed-phase cloud properties from Doppler radar spectra. J. Atmos. Oceanic Technol., 21, 660670, doi:10.1175/1520-0426(2004)021<0660:DMCPFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., S. Y. Matrosov, and T. Uttal, 2006: Arctic mixed-phase cloud properties derived from surface-based sensors at SHEBA. J. Atmos. Sci., 63, 697711, doi:10.1175/JAS3659.1.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., and Coauthors, 2008a: A focus on mixed-phase clouds. Bull. Amer. Meteor. Soc., 89, 15491562, doi:10.1175/2008BAMS2378.1.

    • Search Google Scholar
    • Export Citation
  • Shupe, M. D., P. Kollias, P. O. G. Persson, and G. M. McFarquhar, 2008b: Vertical motions in Arctic mixed-phase stratiform clouds. J. Atmos. Sci., 65, 13041322, doi:10.1175/2007JAS2479.1.

    • Search Google Scholar
    • Export Citation
  • Straka, J. M., and D. S. Zrnić, 1993: An algorithm to deduce hydrometeor types and contents from multiparameter radar data. Preprints, 26th Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc., 513–516.

  • Thompson, E. J., S. A. Rutledge, B. Dolan, V. Chandrasekar, and B. L. Cheong, 2014: A dual-polarization radar hydrometeor classification algorithm for winter precipitation. J. Atmos. Oceanic Technol., 31, 14571481, doi:10.1175/JTECH-D-13-00119.1.

    • Search Google Scholar
    • Export Citation
  • Turner, D. D., 2005: Arctic mixed-phase cloud properties from AERI lidar observations: Algorithm and results from SHEBA. J. Appl. Meteor., 44, 427444, doi:10.1175/JAM2208.1.

    • Search Google Scholar
    • Export Citation
  • Verlinde, J., M. P. Rambukkange, E. E. Clothiaux, G. M. McFarquhar, and E. W. Eloranta, 2013: Arctic multilayered mixed-phase cloud processes revealed in millimeter-wave cloud radar Doppler spectra. J. Geophys. Res., 118, 13 19913 213, doi:10.1002/2013JD020183.

    • Search Google Scholar
    • Export Citation
  • Vihma, T., and Coauthors, 2014: Advances in understanding and parameterization of small-scale physical processes in the marine Arctic climate system: A review. Atmos. Chem. Phys., 14, 94039450, doi:10.5194/acp-14-9403-2014.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., V. N. Bringi, M. Hagan, and P. Meischner, 1994: Polarimetric radar studies of atmospheric ice particles. IEEE Trans. Geosci. Remote Sens., 32, 110, doi:10.1109/36.285183.

    • Search Google Scholar
    • Export Citation
  • Vivekanandan, J., S. M. Ellis, R. Oye, D. S. Zrnić, A. V. Ryzhkov, and J. Straka, 1999: Cloud microphysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor. Soc., 80, 381388, doi:10.1175/1520-0477(1999)080<0381:CMRUSB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., 2014: Rayleigh scattering by hexagonal ice crystals and the interpretation of dual-polarization radar measurements. Quart. J. Roy. Meteor. Soc., 140, 20902096, doi:10.1002/qj.2262.

    • Search Google Scholar
    • Export Citation
  • Westbrook, C. D., and A. J. Illingworth, 2013: The formation of ice in a long-lived supercooled layer cloud. Quart. J. Roy. Meteor. Soc., 139, 22092221, doi:10.1002/qj.2096.

    • Search Google Scholar
    • Export Citation
  • Williams, E. R., and Coauthors, 2015: Measurements of differential reflectivity in snowstorms and warm season stratiform systems. J. Appl. Meteor. Climatol., 54, 573595, doi:10.1175/JAMC-D-14-0020.1.

    • Search Google Scholar
    • Export Citation
  • Witte, H. J., 1968: Airborne observations of cloud particles and infrared flux density (8–14 μ) in the Arctic. M.S. thesis, Dept. of Atmospheric Sciences, University of Washington, 101 pp.

  • Wolde, M., and G. Vali, 2001: Polarimetric signatures from ice crystals observed at 95 GHz in winter clouds. Part I: Dependence on crystal form. J. Atmos. Sci., 58, 828841, doi:10.1175/1520-0469(2001)058<0828:PSFICO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Xu, Y.-L., 1995: Electromagnetic scattering by an aggregate of spheres. Appl. Opt., 34, 45734588, doi:10.1364/AO.34.004573.

  • Zawadzki, I., F. Fabry, and W. Szyrmer, 2001: Observations of supercooled water and secondary ice generation by a vertically pointing X-band Doppler radar. Atmos. Res., 59–60, 343359, doi:10.1016/S0169-8095(01)00124-7.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., R. Raghavan, and V. Chandrasekar, 1994: Observation of copular correlation coefficient through a bright band at vertical incidence. J. Appl. Meteor., 33, 4552, doi:10.1175/1520-0450(1994)033<0045:OOCCCT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zrnić, D. S., A. Ryzhkov, J. Straka, Y. Liu, and J. Vivekanandan, 2001: Testing a procedure for automatic classification of hydrometeor types. J. Atmos. Oceanic Technol., 18, 892913, doi:10.1175/1520-0426(2001)018<0892:TAPFAC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 995 555 42
PDF Downloads 381 57 3