A Method for Calculating the Height of Overshooting Convective Cloud Tops Using Satellite-Based IR Imager and CloudSat Cloud Profiling Radar Observations

Sarah M. Griffin Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Sarah M. Griffin in
Current site
Google Scholar
PubMed
Close
,
Kristopher M. Bedka NASA Langley Research Center, Hampton, Virginia

Search for other papers by Kristopher M. Bedka in
Current site
Google Scholar
PubMed
Close
, and
Christopher S. Velden Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin–Madison, Madison, Wisconsin

Search for other papers by Christopher S. Velden in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

Assigning accurate heights to convective cloud tops that penetrate into the upper troposphere–lower stratosphere (UTLS) region using infrared (IR) satellite imagery has been an unresolved issue for the satellite research community. The height assignment for the tops of optically thick clouds is typically accomplished by matching the observed IR brightness temperature (BT) with a collocated rawinsonde or numerical weather prediction (NWP) profile. However, “overshooting tops” (OTs) are typically colder (in BT) than any vertical level in the associated profile, leaving the height of these tops undetermined using this standard approach. A new method is described here for calculating the heights of convectively driven OTs using the characteristic temperature lapse rate of the cloud top as it ascends into the UTLS region. Using 108 MODIS-identified OT events that are directly observed by the CloudSat Cloud Profiling Radar (CPR), the MODIS-derived brightness temperature difference (BTD) between the OT and anvil regions can be defined. This BTD is combined with the CPR- and NWP-derived height difference between these two regions to determine the mean lapse rate, −7.34 K km−1, for the 108 events. The anvil height is typically well known, and an automated OT detection algorithm is used to derive BTD, so the lapse rate allows a height to be calculated for any detected OT. An empirical fit between MODIS and geostationary imager IR BT for OTs and anvil regions was performed to enable application of this method to coarser-spatial-resolution geostationary data. Validation indicates that ~75% (65%) of MODIS (geostationary) OT heights are within ±500 m of the coincident CPR-estimated heights.

Corresponding author address: Sarah M. Griffin, Cooperative Institute for Meteorological Satellite Studies, 1225 W. Dayton St., Madison, WI 53706. E-mail: sarah.griffin@ssec.wisc.edu

Abstract

Assigning accurate heights to convective cloud tops that penetrate into the upper troposphere–lower stratosphere (UTLS) region using infrared (IR) satellite imagery has been an unresolved issue for the satellite research community. The height assignment for the tops of optically thick clouds is typically accomplished by matching the observed IR brightness temperature (BT) with a collocated rawinsonde or numerical weather prediction (NWP) profile. However, “overshooting tops” (OTs) are typically colder (in BT) than any vertical level in the associated profile, leaving the height of these tops undetermined using this standard approach. A new method is described here for calculating the heights of convectively driven OTs using the characteristic temperature lapse rate of the cloud top as it ascends into the UTLS region. Using 108 MODIS-identified OT events that are directly observed by the CloudSat Cloud Profiling Radar (CPR), the MODIS-derived brightness temperature difference (BTD) between the OT and anvil regions can be defined. This BTD is combined with the CPR- and NWP-derived height difference between these two regions to determine the mean lapse rate, −7.34 K km−1, for the 108 events. The anvil height is typically well known, and an automated OT detection algorithm is used to derive BTD, so the lapse rate allows a height to be calculated for any detected OT. An empirical fit between MODIS and geostationary imager IR BT for OTs and anvil regions was performed to enable application of this method to coarser-spatial-resolution geostationary data. Validation indicates that ~75% (65%) of MODIS (geostationary) OT heights are within ±500 m of the coincident CPR-estimated heights.

Corresponding author address: Sarah M. Griffin, Cooperative Institute for Meteorological Satellite Studies, 1225 W. Dayton St., Madison, WI 53706. E-mail: sarah.griffin@ssec.wisc.edu
Save
  • Bedka, K., J. Brunner, R. Dworak, W. Feltz, J. Otkin, and T. Greenwald, 2010: Objective satellite-based detection of overshooting tops using infrared window channel brightness temperature gradients. J. Appl. Meteor. Climatol., 49, 181202, doi:10.1175/2009JAMC2286.1.

    • Search Google Scholar
    • Export Citation
  • Bedka, K., R. Dworak, J. Brunner, and W. Feltz, 2012: Validation of satellite-based objective overshooting cloud-top detection methods using CloudSat cloud profiling radar observations. J. Appl. Meteor. Climatol., 51, 18111822, doi:10.1175/JAMC-D-11-0131.1.

    • Search Google Scholar
    • Export Citation
  • Bedka, K., C. Wang, R. Rogers, L. Carey, W. Feltz, and J. Kanak, 2015: Examining deep convective cloud evolution using total lightning, WSR-88D, and GOES-14 super rapid scan datasets. Wea. Forecasting, 30, 571590, doi:10.1175/WAF-D-14-00062.1.

    • Search Google Scholar
    • Export Citation
  • Chae, J. H., and S. C. Sherwood, 2010: Insights into cloud-top height and dynamics from the seasonal cycle of cloud-top heights observed by MISR in the west Pacific region. J. Atmos. Sci., 67, 248261, doi:10.1175/2009JAS3099.1.

    • Search Google Scholar
    • Export Citation
  • CloudSat Data Processing Center, 2007: CloudSat 2B GEOPROF quality statement: May 2007 (version R04). [Available online at http://www.cloudsat.cira.colostate.edu/sites/default/files/products/files/2B-GEOPROF_Quality-Statement.P_R04.20070501.pdf.]

  • Dworak, R., K. Bedka, J. Brunner, and W. Feltz, 2012: Comparison between GOES-12 overshooting-top detections, WSR-88D radar reflectivity, and severe storm reports. Wea. Forecasting, 27, 684699, doi:10.1175/WAF-D-11-00070.1.

    • Search Google Scholar
    • Export Citation
  • FAA, 2008: Principles of flight. Pilot’s Handbook of Aeronautical Knowledge, Federal Aviation Administration, 3-1–3-10. [Available online at www.faa.gov/regulations_policies/handbooks_manuals/aviation/pilot_handbook/media/PHAK%20-%20Chapter%2003.pdf.]

  • Fromm, M. D., and R. Servranckx, 2003: Transport of forest fire smoke above the tropopause by supercell convection. Geophys. Res. Lett., 30, 1542, doi:10.1029/2002GL016820.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1972: Tornado occurrences related to overshooting cloud-top heights as determined from ATS pictures. Satellite and Mesometeorology Research Paper 97, 37 pp. [Available online at http://ntrs.nasa.gov/search.jsp?R=19730013840.]

  • Gettelman, A., M. L. Salby, and F. Sassi, 2002: Distribution and influence of convection in the tropical tropopause region. J. Geophys. Res., 107, 4080, doi:10.1029/2001JD001048.

    • Search Google Scholar
    • Export Citation
  • Glickman, T., Ed., 2000: Glossary of Meteorology. 2nd ed. Amer. Meteor. Soc., 855 pp.

  • Goddard Earth Sciences Data and Information Services Center, cited 2015: MODIS/Aqua, AIRS, MLS and CloudSat tracks intercomparison. [Available online at disc.sci.gsfc.nasa.gov/atdd/documentation/ATrainTracks.pdf.]

  • Heymsfield, G. M., L. Tian, A. J. Heymsfield, L. Li, and S. Guimond, 2010: Characteristics of deep tropical and subtropical convection from nadir-viewing high-altitude airborne Doppler radar. J. Atmos. Sci., 67, 285308, doi:10.1175/2009JAS3132.1.

    • Search Google Scholar
    • Export Citation
  • Hillger, D., and Coauthors, 2013: First-light imagery from Suomi NPP VIIRS. Bull. Amer. Meteor. Soc., 94, 10191029, doi:10.1175/BAMS-D-12-00097.1.

    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., and M. R. Kumjian, 2015: Microphysical characteristics of overshooting convection from polarimetric radar observations. J. Atmos. Sci., 72, 870891, doi:10.1175/JAS-D-13-0388.1.

    • Search Google Scholar
    • Export Citation
  • HSD Engineering, 2012: Altitude–pressure conversion table. [Available online at http://www.hsdengineering.com/images/ALT_PRESS_TABLE1.pdf.]

  • Hung, R. J., and R. E. Smith, 1982: Satellite infrared imagery, rawinsonde data, and gravity wave remote sensing of severe convective storms. Int. J. Infrared Millimeter Waves, 3, 489502, doi:10.1007/BF01007044.

    • Search Google Scholar
    • Export Citation
  • Johnson, D. E., P. K. Wang, and J. M. Straka, 1994: A study of microphysical processes in the 2 August 1981 CCOPE supercell storm. Atmos. Res., 33, 93123, doi:10.1016/0169-8095(94)90015-9.

    • Search Google Scholar
    • Export Citation
  • Kaňák, J., K. Bedka, and A. Sokol, 2012: Mature convective storms and their overshooting tops over central Europe—Overshooting top height analysis for summers 2009–2011. Extended Abstracts, 2012 EUMETSAT Meteorological Satellite Conf., Sopot, Poland. [Available online at http://www.eumetsat.int//website/wcm/idc/idcplg?IdcService=GET_FILE&dDocName=PDF_CONF_P61_S7_12_KANAK_V&RevisionSelectionMethod=LatestReleased&Rendition=Web.]

  • Kaplan, M. L., A. W. Huffman, K. M. Lux, J. J. Charney, A. J. Riordan, and Y.-L. Lin, 2005: Characterizing the severe turbulence environments associated with commercial aviation accidents. Part 1: A 44-case study synoptic observational analyses. Meteor. Atmos. Phys., 88, 129153, doi:10.1007/s00703-004-0080-0.

    • Search Google Scholar
    • Export Citation
  • Lane, T. P., R. D. Sharman, T. L. Clark, and H.-M. Hsu, 2003: An investigation of turbulence generation mechanisms above deep convection. J. Atmos. Sci., 60, 12971321, doi:10.1175/1520-0469(2003)60<1297:AIOTGM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. J. Zipser, 2005: Global distribution of convection penetrating the tropical tropopause. J. Geophys. Res., 110, D23104, doi:10.1029/2005JD006063.

    • Search Google Scholar
    • Export Citation
  • Liu, C., and E. J. Zipser, 2008: Diurnal cycles of precipitation, clouds, and lightning in the tropics from 9 years of TRMM observations. Geophys. Res. Lett., 35, L04819, doi:10.1029/2007GL032437.

    • Search Google Scholar
    • Export Citation
  • Luo, Z., G. Y. Liu, and G. L. Stephens, 2008: CloudSat adding new insight into tropical penetrating convection. J. Geophys. Res., 35, L19819, doi:10.1029/2008GL035330.

    • Search Google Scholar
    • Export Citation
  • Mecikalski, J. R., and Coauthors, 2007: Aviation applications for satellite-based observations of cloud properties, convective initiation, in-flight icing, turbulence, and volcanic ash. Bull. Amer. Meteor. Soc., 88, 15891607, doi:10.1175/BAMS-88-10-1589.

    • Search Google Scholar
    • Export Citation
  • Minzner, R. A., 1977: The 1976 standard atmosphere and its relationship to earlier standards. Rev. Geophys., 15, 375384, doi:10.1029/RG015i003p00375.

    • Search Google Scholar
    • Export Citation
  • Monette, S. A., C. S. Velden, K. S. Griffin, and C. M. Rozoff, 2012: Examining trends in satellite-detected tropical overshooting tops as a potential predictor of tropical cyclone rapid intensification. J. Appl. Meteor. Climatol., 51, 19171930, doi:10.1175/JAMC-D-11-0230.1.

    • Search Google Scholar
    • Export Citation
  • NCDC, cited 2015: Global Data Assimilation System (GDAS). [Available online at https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/global-data-assimilation-system-gdas.]

  • Pan, L. L., and Coauthors, 2014: Thunderstorms enhance tropospheric ozone by wrapping and shedding stratospheric air. Geophys. Res. Lett., 41, 77857790, doi:10.1002/2014GL061921.

    • Search Google Scholar
    • Export Citation
  • Portland State Aerospace Society, 2004: A quick derivation relating altitude to air pressure. [Available online at psas.pdx.edu/RocketScience/PressureAltitude_Derived.pdf.]

  • Randall, D. A., 2009: The moist adiabatic lapse rate. [Available online at kiwi.atmos.colostate.edu/group/dave/pdf/Moist_adiabatic_lapse_rate.pdf.]

  • Reinke, D. L., P. T. Partain, S. P. Longmore, D. G. Reinke, and S. D. Miller, 2009: CloudSat Data Processing Center—Cloud Profiling Radar (CPR) data processing, products, and user applications. Extended Abstracts, 34th Conf. on Radar Meteorology, Williamsburg, VA, Amer. Meteor. Soc., 4A.2. [Available online at https://ams.confex.com/ams/pdfpapers/155251.pdf.]

  • Setvák, M., D. T. Lindsey, R. M. Rabin, P. K. Wang, and A. Demeterová, 2008: Indication of water vapor transport into the lower stratosphere above midlatitude convective storms: Meteosat Second Generation satellite observations and radiative transfer model simulations. Atmos. Res., 89, 170180, doi:10.1016/j.atmosres.2007.11.031.

    • Search Google Scholar
    • Export Citation
  • Sherwood, S. C., J.-H. Chae, P. Minnis, and M. McGill, 2004: Underestimation of deep convective cloud tops by thermal imagery. J. Geophys. Res., 31, L11102, doi:10.1029/2004GL019699.

    • Search Google Scholar
    • Export Citation
  • Wang, C., Z. J. Luo, and Z. Huang, 2011: Parallax correction in collocating CloudSat and Moderate Resolution Imaging Spectroradiometer (MODIS) observations: Method and application to convection study. J. Geophys. Res., 116, D17201, doi:10.1029/2011JD016097.

    • Search Google Scholar
    • Export Citation
  • Wang, P. K., M. Setvák, W. Lyons, W. Schmid, and H.-M. Lin, 2009: Further evidences of deep convective vertical transport of water vapor through the tropopause. Atmos. Res., 94, 400408, doi:10.1016/j.atmosres.2009.06.018.

    • Search Google Scholar
    • Export Citation
  • Weisz, E., J. Li, W. P. Menzel, A. K. Heidinger, B. H. Kahn, and C.-Y. Liu, 2007: Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals. Geophys. Res. Lett., 34, L17811, doi:10.1029/2007GL030676.

    • Search Google Scholar
    • Export Citation
  • Wilks, D. S., 2006: Statistical Methods in the Atmospheric Sciences. 2nd ed. Academic Press, 627 pp.

  • Wolfe, R. E., D. P. Roy, and E. Vermote, 1998: MODIS land data storage, gridding, and compositing methodology: Level 2 grid. IEEE Trans. Geosci. Remote Sens., 36, 13241338, doi:10.1109/36.701082.

    • Search Google Scholar
    • Export Citation
  • Zipser, E. J., C. Liu, D. J. Cecil, S. W. Nesbitt, and D. P. Yorty, 2006: Where are the most intense thunderstorms on Earth? Bull. Amer. Meteor. Soc., 87, 10571071, doi:10.1175/BAMS-87-8-1057.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 1988 933 41
PDF Downloads 970 175 14