Climate Change Implications for Tropical Islands: Interpolating and Interpreting Statistically Downscaled GCM Projections for Management and Planning

Azad Henareh Khalyani International Institute of Tropical Forestry, U.S. Department of Agriculture Forest Service, San Juan, Puerto Rico
North Carolina Cooperative Fish and Wildlife Research Unit, Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina

Search for other papers by Azad Henareh Khalyani in
Current site
Google Scholar
PubMed
Close
,
William A. Gould International Institute of Tropical Forestry, U.S. Department of Agriculture Forest Service, San Juan, Puerto Rico

Search for other papers by William A. Gould in
Current site
Google Scholar
PubMed
Close
,
Eric Harmsen Department of Agricultural and Biosystems Engineering, University of Puerto Rico, Mayaguez, Puerto Rico

Search for other papers by Eric Harmsen in
Current site
Google Scholar
PubMed
Close
,
Adam Terando Southeast Climate Science Center, U.S. Geological Survey, Raleigh, North Carolina

Search for other papers by Adam Terando in
Current site
Google Scholar
PubMed
Close
,
Maya Quinones International Institute of Tropical Forestry, U.S. Department of Agriculture Forest Service, San Juan, Puerto Rico

Search for other papers by Maya Quinones in
Current site
Google Scholar
PubMed
Close
, and
Jaime A. Collazo ** U.S. Geological Survey, and North Carolina Cooperative Fish and Wildlife Research Unit, Department of Applied Ecology, North Carolina State University, Raleigh, North Carolina

Search for other papers by Jaime A. Collazo in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

The potential ecological and economic effects of climate change for tropical islands were studied using output from 12 statistically downscaled general circulation models (GCMs) taking Puerto Rico as a test case. Two model selection/model averaging strategies were used: the average of all available GCMs and the average of the models that are able to reproduce the observed large-scale dynamics that control precipitation over the Caribbean. Five island-wide and multidecadal averages of daily precipitation and temperature were estimated by way of a climatology-informed interpolation of the site-specific downscaled climate model output. Annual cooling degree-days (CDD) were calculated as a proxy index for air-conditioning energy demand, and two measures of annual no-rainfall days were used as drought indices. Holdridge life zone classification was used to map the possible ecological effects of climate change. Precipitation is predicted to decline in both model ensembles, but the decrease was more severe in the “regionally consistent” models. The precipitation declines cause gradual and linear increases in drought intensity and extremes. The warming from the 1960–90 period to the 2071–99 period was 4.6°–9°C depending on the global emission scenarios and location. This warming may cause increases in CDD, and consequently increasing energy demands. Life zones may shift from wetter to drier zones with the possibility of losing most, if not all, of the subtropical rain forests and extinction risks to rain forest specialists or obligates.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-15-0182.s1.

Publisher’s Note: This article was revised on 8 April 2016 to correct the institutional affiliation of the fifth author, which was misidentified when originally published.

Corresponding author address: Azad Henareh Khalyani, USDA Forest Service, International Institute of Tropical Forestry, 1201 Calle Ceiba, Río Piedras, San Juan, PR 00926. E-mail: ahenareh@mtu.edu

Abstract

The potential ecological and economic effects of climate change for tropical islands were studied using output from 12 statistically downscaled general circulation models (GCMs) taking Puerto Rico as a test case. Two model selection/model averaging strategies were used: the average of all available GCMs and the average of the models that are able to reproduce the observed large-scale dynamics that control precipitation over the Caribbean. Five island-wide and multidecadal averages of daily precipitation and temperature were estimated by way of a climatology-informed interpolation of the site-specific downscaled climate model output. Annual cooling degree-days (CDD) were calculated as a proxy index for air-conditioning energy demand, and two measures of annual no-rainfall days were used as drought indices. Holdridge life zone classification was used to map the possible ecological effects of climate change. Precipitation is predicted to decline in both model ensembles, but the decrease was more severe in the “regionally consistent” models. The precipitation declines cause gradual and linear increases in drought intensity and extremes. The warming from the 1960–90 period to the 2071–99 period was 4.6°–9°C depending on the global emission scenarios and location. This warming may cause increases in CDD, and consequently increasing energy demands. Life zones may shift from wetter to drier zones with the possibility of losing most, if not all, of the subtropical rain forests and extinction risks to rain forest specialists or obligates.

Supplemental information related to this paper is available at the Journals Online website: http://dx.doi.org/10.1175/JAMC-D-15-0182.s1.

Publisher’s Note: This article was revised on 8 April 2016 to correct the institutional affiliation of the fifth author, which was misidentified when originally published.

Corresponding author address: Azad Henareh Khalyani, USDA Forest Service, International Institute of Tropical Forestry, 1201 Calle Ceiba, Río Piedras, San Juan, PR 00926. E-mail: ahenareh@mtu.edu
Save
  • Allan, R., and B. Soden, 2008: Atmospheric warming and the amplification of precipitation extremes. Science, 321, 14811484, doi:10.1126/science.1160787.

    • Search Google Scholar
    • Export Citation
  • Allen, C. D., and Coauthors, 2010: A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage., 259, 660684, doi:10.1016/j.foreco.2009.09.001.

    • Search Google Scholar
    • Export Citation
  • Allen, M. R., and Coauthors, 2014: Climate change 2014 synthesis report (longer report). Adopted 1 November 2014. [Available online at http://www.isciences.com/spotlight/COP20_Road_to_Lima/SYR_AR5_LONGERREPORT.pdf.]

  • Allen, R. G., L. S. Pereira, D. Raes, and M. Smith, 1998: Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper 56, 300 pp. [Available online at www.fao.org/docrep/X0490E/X0490E00.htm.]

  • Angeles, M. E., J. E. González, N. D. Ramírez‐Beltrán, C. A. Tepley, and D. E. Comarazamy, 2010: Origins of the Caribbean rainfall bimodal behavior. J. Geophys. Res., 115, D11106, doi:10.1029/2009JD012990.

    • Search Google Scholar
    • Export Citation
  • Backéus, S., P. Wikström, and T. Lämås, 2005: A model for regional analysis of carbon sequestration and timber production. For. Ecol. Manage., 216, 2840, doi:10.1016/j.foreco.2005.05.059.

    • Search Google Scholar
    • Export Citation
  • Blaschke, T., C. Burnett, and A. Pekkarinen, 2004: Image segmentation methods for object-based analysis and classification. Remote Sensing Image Analysis: Including the Spatial Domain, S. M. Jong and F. D. van der Meer, Eds., Springer, 211–236.

  • Brown, D., and A. Comrie, 2002: Spatial modeling of winter temperature and precipitation in Arizona and New Mexico, USA. Climate Res., 22, 115128, doi:10.3354/cr022115.

    • Search Google Scholar
    • Export Citation
  • Chen, X., X. Zhang, and B. Li, 2003: The possible response of life zones in China under global climate change. Global Planet. Change, 38, 327337, doi:10.1016/S0921-8181(03)00115-2.

    • Search Google Scholar
    • Export Citation
  • CLCC, 2015: Caribbean Landscape Conservation Cooperative Data Center. Accessed 15 September 2015. [Available online at http://caribbeanlcc.org/data-center/.]

  • Comarazamy, D. E., J. E. González, J. C. Luvall, D. L. Rickman, and R. D. Bornstein, 2013: Climate impacts of land-cover and land-use changes in tropical islands under conditions of global climate change. J. Climate, 26, 15351550, doi:10.1175/JCLI-D-12-00087.1.

    • Search Google Scholar
    • Export Citation
  • Cook, B. I., A. Terando, and A. Steiner, 2010: Ecological forecasting under climatic data uncertainty: A case study in phenological modeling. Environ. Res. Lett., 5, 044014, doi:10.1088/1748-9326/5/4/044014.

    • Search Google Scholar
    • Export Citation
  • Cressie, N., 1993: Statistics for Spatial Data. Wiley, 900 pp.

  • Daly, C., W. Gibson, G. Taylor, G. L. Johnson, and P. Pasteris, 2002: A knowledge-based approach to the statistical mapping of climate. Climate Res., 22, 99113, doi:10.3354/cr022099.

    • Search Google Scholar
    • Export Citation
  • Daly, C., E. Helmer, and M. Quiñones, 2003: Mapping the climate of Puerto Rico, Vieques and Culebra. Int. J. Climatol., 23, 13591381, doi:10.1002/joc.937.

    • Search Google Scholar
    • Export Citation
  • Donohoe, A., K. C. Armour, A. G. Pendergrass, and D. S. Battisti, 2014: Shortwave and longwave radiative contributions to global warming under increasing CO2. Proc. Natl. Acad. Sci. USA, 111, 16 70016 705, doi:10.1073/pnas.1412190111.

    • Search Google Scholar
    • Export Citation
  • Emanuel, W. R., H. H. Shugart, and M. P. Stevenson, 1985: Climatic change and the broad-scale distribution of terrestrial ecosystem complexes. Climatic Change, 7, 2943, doi:10.1007/BF00139439.

    • Search Google Scholar
    • Export Citation
  • Energy Information Administration, 1994: Annual energy outlook 1994 with projections to 2010. DoE/EIA-0383(94). Department of Energy, 306 pp. [Available online at http://www.worldenergyoutlook.org/media/weowebsite/2008-1994/weo1994.pdf.]

  • Ewel, J. J., and J. L. Whitmore, 1973: The ecological life zones of Puerto Rico and the U.S.Virgin Islands. USDA Forest Service, Institute of Tropical Forestry, Res. Paper ITF-018, 72 pp.

  • Fordham, D. A., and B. W. Brook, 2010: Why tropical island endemics are acutely susceptible to global change. Biodivers. Conserv., 19, 329342, doi:10.1007/s10531-008-9529-7.

    • Search Google Scholar
    • Export Citation
  • Gould, W. A., K. R. Jacobs, and M. Maldonado, 2016: The Caribbean Landscape Conservation Cooperative: A new framework for effective conservation of natural and cultural resources in the Caribbean. Caribb. Nat., SI1, 73–86. [Available online at http://www.eaglehill.us/CANAonline/cana-sp1-2016.shtml.].

    • Search Google Scholar
    • Export Citation
  • Goyal, M. R., 2014: Evapotranspiration: Temperature versus elevation relationships. Evapotranspiration: Principles and Applications for Water Management, M. R. Goyal and E. W. Harmsen, Eds., CRC Press, 471–478.

  • Grimm, N. B., M. D. Staudinger, A. Staudt, S. L. Carter, F. S. Chapin, P. Kareiva, M. Ruckelshaus, and B. A. Stein, 2013: Climate-change impacts on ecological systems: Introduction to a US assessment. Front. Ecol. Environ., 11, 456464, doi:10.1890/120310.

    • Search Google Scholar
    • Export Citation
  • Hargreaves, G. H., and Z. A. Samani, 1985: Reference crop evapotranspiration from temperature. Appl. Eng. Agric., 1, 9699, doi:10.13031/2013.26773.

    • Search Google Scholar
    • Export Citation
  • Harmsen, E. W., M. R. Goyal, and S. Torres Justiniano, 2002: Estimating evapotranspiration in Puerto Rico. J. Agric. Univ. Puerto Rico, 86, 3554. [Available online at http://academic.uprm.edu/abe/backup2/backup/PRAGWATER/Estimating Evapotranspiration in PR.pdf.]

    • Search Google Scholar
    • Export Citation
  • Harmsen, E., N. L. Miller, N. J. Schlegel, and J. E. Gonzalez, 2009: Seasonal climate change impacts on evapotranspiration, precipitation deficit and crop yield in Puerto Rico. Agric. Water Manage., 96, 10851095, doi:10.1016/j.agwat.2009.02.006.

    • Search Google Scholar
    • Export Citation
  • Hayhoe, K., 2013: Quantifying key drivers of climate variability and change for Puerto Rico and the Caribbean: Final report 1 Oct 2011–30 Sep 2012. Agreement G10AC00582, 241 pp.

  • Holdridge, L. R., 1947: Determination of world plant formations from simple climatic data. Science, 105, 367368, doi:10.1126/science.105.2727.367.

    • Search Google Scholar
    • Export Citation
  • Hunter, R. D., and R. K. Meentemeyer, 2005: Climatologically aided mapping of daily precipitation and temperature. J. Appl. Meteor., 44, 15011510, doi:10.1175/JAM2295.1.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press, 996 pp.

  • IPCC, 2014: Climate Change 2014: Synthesis Report. R. K. Pachauri and L. A. Meyer, Eds., IPCC, 151 pp. [Available online at https://www.ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_FINAL_full.pdf.]

  • Isaac, M., and D. P. van Vuuren, 2009: Modeling global residential sector energy demand for heating and air conditioning in the context of climate change. Energy Policy, 37, 507521, doi:10.1016/j.enpol.2008.09.051.

    • Search Google Scholar
    • Export Citation
  • Jennings, L. N., J. Douglas, E. Treasure, and G. González, 2014: Climate change effects in El Yunque National Forest, Puerto Rico, and the Caribbean region. Southern Research Station, USDA Forest Service, General Tech. Rep. SRS-193, 47 pp.

  • Jensen, M., R. Burman, and R. Allen, Eds., 1990: Evapotranspiration and Irrigation Water Requirements. American Society of Civil Engineers, 360 pp. [Available online at http://cedb.asce.org/cgi/WWWdisplay.cgi?67841.]

  • Jones, P. G., and P. K. Thornton, 2003: The potential impacts of climate change on maize production in Africa and Latin America in 2055. Global Environ. Change, 13, 5159, doi:10.1016/S0959-3780(02)00090-0.

    • Search Google Scholar
    • Export Citation
  • Kendall, M. G., 1975: Rank Correlation Methods. 4th ed. Charles Griffin, 212 pp.

  • Knutti, R., 2010: The end of model democracy? Climatic Change, 102, 395404, doi:10.1007/s10584-010-9800-2.

  • Lu, J., G. Sun, S. McNulty, and D. Amatya, 2005: A comparison of six potential evapotranspiration methods for regional use in the southeastern United States. J. Amer. Water Resour. Assoc., 41, 621633, doi:10.1111/j.1752-1688.2005.tb03759.x.

    • Search Google Scholar
    • Export Citation
  • Lugo, A. E., S. B. Brown, R. Dodson, T. S. Smith, and H. H. Shugart, 1999: The Holdridge life zones of the conterminous United States in relation to ecosystem mapping. J. Biogeogr., 26, 10251038, doi:10.1046/j.1365-2699.1999.00329.x.

    • Search Google Scholar
    • Export Citation
  • Mann, H., 1945: Nonparametric tests against trend. Econometrica, 13, 245259, doi:10.2307/1907187.

  • Masson, D., and R. Knutti, 2011: Climate model genealogy. Geophys. Res. Lett., 38, L08703, doi:10.1029/2011GL046864.

  • McGeehin, M. A., and M. Mirabelli, 2001: The potential impacts of climate variability and change on temperature-related morbidity and mortality in the United States. Environ. Health Perspect., 109, 185189, doi:10.2307/3435008.

    • Search Google Scholar
    • Export Citation
  • McMichael, A. J., and A. Haines, 1997: Global climate change: The potential effects on health. BMJ, 315, 805809, doi:10.1136/bmj.315.7111.805.

    • Search Google Scholar
    • Export Citation
  • Menne, M. J., I. Durre, R. S. Vose, B. E. Gleason, and T. G. Houston, 2012: An overview of the Global Historical Climatology Network–Daily database. J. Atmos. Oceanic Technol., 29, 897910, doi:10.1175/JTECH-D-11-00103.1.

    • Search Google Scholar
    • Export Citation
  • Mideksa, T. K., and S. Kallbekken, 2010: The impact of climate change on the electricity market: A review. Energy Policy, 38, 35793585, doi:10.1016/j.enpol.2010.02.035.

    • Search Google Scholar
    • Export Citation
  • Miller, N. L., K. Hayhoe, J. Jin, and M. Auffhammer, 2008: Climate, extreme heat, and electricity demand in California. J. Appl. Meteor. Climatol., 47, 18341844, doi:10.1175/2007JAMC1480.1.

    • Search Google Scholar
    • Export Citation
  • Nakaegawa, T., A. Kitoh, Y. Ishizaki, S. Kusunoki, and H. Murakami, 2014a: Caribbean low‐level jets and accompanying moisture fluxes in a global warming climate projected with CMIP3 multi‐model ensemble and fine‐mesh atmospheric general circulation models. Int. J. Climatol., 34, 964977, doi:10.1002/joc.3733.

    • Search Google Scholar
    • Export Citation
  • Nakaegawa, T., A. Kitoh, H. Murakami, and S. Kusunoki, 2014b: Annual maximum 5-day rainfall total and maximum number of consecutive dry days over Central America and the Caribbean in the late twenty-first century projected by an atmospheric general circulation model with three different horizontal resolutions. Theor. Appl. Climatol., 116, 155168, doi:10.1007/s00704-013-0934-9.

    • Search Google Scholar
    • Export Citation
  • Nakicenovic, N., and R. Swart, Eds., 2000: Special Report on Emissions Scenarios. Cambridge University Press, 612 pp.

  • Nastos, P. T., and C. S. Zerefos, 2009: Spatial and temporal variability of consecutive dry and wet days in Greece. Atmos. Res., 94, 616628, doi:10.1016/j.atmosres.2009.03.009.

    • Search Google Scholar
    • Export Citation
  • Ohmann, J. L., and T. A. Spies, 1998: Regional gradient analysis and spatial pattern of woody plant communities of Oregon forests. Ecol. Monogr., 68, 151182, doi:10.1890/0012-9615(1998)068[0151:RGAASP]2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Pebesma, E. J., 2004: Multivariable geostatistics in S: The gstat package. Comput. Geosci., 30, 683691, doi:10.1016/j.cageo.2004.03.012.

    • Search Google Scholar
    • Export Citation
  • Polade, S. D., D. W. Pierce, D. R. Cayan, A. Gershunov, and M. D. Dettinger, 2014: The key role of dry days in changing regional climate and precipitation regimes. Sci. Rep., 4, 4364, doi:10.1038/srep04364.

    • Search Google Scholar
    • Export Citation
  • Ramírez, V., A. Mejía, E. Marín, and R. Arango, 2011: Evaluation of models for estimating the reference evapotranspiration in Colombian coffee zone. Agron. Colomb., 29, 107114.

    • Search Google Scholar
    • Export Citation
  • R Development Core Team, 2013: R: A language and environment for statistical computing. R Foundation for Statistical Computing. [Available online at http://www.R-project.org/.]

  • Rosenthal, D. H., H. K. Gruenspecht, and E. A. Moran, 1995: Effects of global warming on energy use for space heating and cooling in the United States. Energy J., 16, 7796.

    • Search Google Scholar
    • Export Citation
  • Ryu, J., and K. Hayhoe, 2014: Understanding the sources of Caribbean precipitation biases in CMIP3 and CMIP5 simulations. Climate Dyn., 42, 32333252, doi:10.1007/s00382-013-1801-1.

    • Search Google Scholar
    • Export Citation
  • Sawyer, J. S., Jr., and A. Lindsey, 1963: The Holdridge bioclimatic formations of the eastern and central United States. Proc. Indiana Acad. Sci., 73, 105112.

    • Search Google Scholar
    • Export Citation
  • Seneviratne, S., and Coauthors, 2012: Changes in climate extremes and their impacts on the natural physical environment. Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation, C. B. Field et al., Eds., Cambridge University Press, 109–230.

  • Singh, S., and N. K. Bainsla, 2015: Analysis of climate change impacts and their mitigation strategies on vegetable sector in tropical islands of Andaman and Nicobar Islands, India. J. Hort., 2, 126, doi:10.4172/2376-0354.1000126.

    • Search Google Scholar
    • Export Citation
  • Sisneros, R., J. Huang, G. Ostrouchov, and F. Hoffman, 2011: Visualizing life zone boundary sensitivities across climate models and temporal spans. Procedia Comput. Sci., 4, 15821591, doi:10.1016/j.procs.2011.04.171.

    • Search Google Scholar
    • Export Citation
  • Stein, M. L., 1999: Interpolation of Spatial Data: Some Theory for Kriging. Springer, 247 pp.

  • Stoner, A. M. K., K. Hayhoe, X. Yang, and D. J. Wuebbles, 2013: An asynchronous regional regression model for statistical downscaling of daily climate variables. Int. J. Climatol., 33, 24732494, doi:10.1002/joc.3603.

    • Search Google Scholar
    • Export Citation
  • Tebaldi, C., and R. Knutti, 2007: The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. Roy. Soc., 365A, 20532075, doi:10.1098/rsta.2007.2076.

    • Search Google Scholar
    • Export Citation
  • Weaver, P., 2012: The Luquillo Mountains: Forest resources and their history. International Institute of Tropical Forestry, USDA Forest Service, General Tech. Rep. IITF-GTR-44, 159 pp.

  • Weaver, P., and W. Gould, 2013: Forest vegetation along environmental gradients in northeastern Puerto Rico. Ecological Gradient Analyses in a Tropical Landscape, G. González, M. R. Willig, and R. B. Waide, Eds. Wiley, 43–65.

  • Willmott, C. J., and S. M. Robeson, 1995: Climatologically aided interpolation (CAI) of terrestrial air temperature. Int. J. Climatol., 15, 221229, doi:10.1002/joc.3370150207.

    • Search Google Scholar
    • Export Citation
  • Wilson, A. M., and J. A. Silander, 2014: Estimating uncertainty in daily weather interpolations: A Bayesian framework for developing climate surfaces. Int. J. Climatol., 34, 25732584, doi:10.1002/joc.3859.

    • Search Google Scholar
    • Export Citation
  • Yue, T., J. Liu, S. E. Jørgensen, Z. Gao, S. Zhang, and X. Deng, 2001: Changes of Holdridge life zone diversity in all of China over half a century. Ecol. Modell., 144, 153162, doi:10.1016/S0304-3800(01)00370-2.

    • Search Google Scholar
    • Export Citation
  • Zhou, Y., J. Eom, and L. Clarke, 2013: The effect of global climate change, population distribution, and climate mitigation on building energy use in the U.S. and China. Climatic Change, 119, 979992, doi:10.1007/s10584-013-0772-x.

    • Search Google Scholar
    • Export Citation
  • Zubler, E. M., S. C. Scherrer, M. Croci-Maspoli, M. A. Liniger, and C. Appenzeller, 2014: Key climate indices in Switzerland; expected changes in a future climate. Climatic Change, 123, 255271, doi:10.1007/s10584-013-1041-8.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 4561 2144 134
PDF Downloads 1244 159 20