Tropopause-Penetrating Convection from Three-Dimensional Gridded NEXRAD Data

David L. Solomon Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by David L. Solomon in
Current site
Google Scholar
PubMed
Close
,
Kenneth P. Bowman Department of Atmospheric Sciences, Texas A&M University, College Station, Texas

Search for other papers by Kenneth P. Bowman in
Current site
Google Scholar
PubMed
Close
, and
Cameron R. Homeyer School of Meteorology, University of Oklahoma, Norman, Oklahoma

Search for other papers by Cameron R. Homeyer in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

A new method that combines radar reflectivities from individual Next Generation Weather Radars (NEXRAD) into a three-dimensional composite with high horizontal and vertical resolution is used to estimate storm-top altitudes for the continental United States east of the Rocky Mountains. Echo-top altitudes are compared with the altitude of the lapse-rate tropopause calculated from the ERA-Interim reanalysis and radiosondes. To sample the diurnal and annual cycles, tropopause-penetrating convection is analyzed at 3-h intervals throughout 2004. Overshooting convection is most common in the north-central part of the United States (the high plains). There is a pronounced seasonal cycle; the majority of overshooting systems occur during the warm season (March–August). There is also a strong diurnal cycle, with maximum overshooting occurring near 0000 UTC. The overshooting volume decreases rapidly with height above the tropopause. Radiosonde observations are used to evaluate the quality of the reanalysis tropopause altitudes and the dependence of overshooting depth on environmental characteristics. The radar–radiosonde comparison reveals that overshooting is deeper in double-tropopause environments and increases as the stability of the lower stratosphere decreases.

Corresponding author address: Kenneth P. Bowman, 3150 TAMU, Dept. of Atmospheric Sciences, Texas A&M University, College Station, TX 77843-3150. E-mail: k-bowman@tamu.edu

Abstract

A new method that combines radar reflectivities from individual Next Generation Weather Radars (NEXRAD) into a three-dimensional composite with high horizontal and vertical resolution is used to estimate storm-top altitudes for the continental United States east of the Rocky Mountains. Echo-top altitudes are compared with the altitude of the lapse-rate tropopause calculated from the ERA-Interim reanalysis and radiosondes. To sample the diurnal and annual cycles, tropopause-penetrating convection is analyzed at 3-h intervals throughout 2004. Overshooting convection is most common in the north-central part of the United States (the high plains). There is a pronounced seasonal cycle; the majority of overshooting systems occur during the warm season (March–August). There is also a strong diurnal cycle, with maximum overshooting occurring near 0000 UTC. The overshooting volume decreases rapidly with height above the tropopause. Radiosonde observations are used to evaluate the quality of the reanalysis tropopause altitudes and the dependence of overshooting depth on environmental characteristics. The radar–radiosonde comparison reveals that overshooting is deeper in double-tropopause environments and increases as the stability of the lower stratosphere decreases.

Corresponding author address: Kenneth P. Bowman, 3150 TAMU, Dept. of Atmospheric Sciences, Texas A&M University, College Station, TX 77843-3150. E-mail: k-bowman@tamu.edu
Save
  • Ackerman, S. A., 1996: Global satellite observations of negative brightness temperature differences between 11 and 6.7 μm. J. Atmos. Sci., 53, 28032812, doi:10.1175/1520-0469(1996)053<2803:GSOONB>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Adler, R. F., M. J. Markus, and D. D. Fen, 1983: Thunderstorm top structure observed by aircraft overflights with an infrared radiometer. J. Climate Appl. Meteor., 22, 579593, doi:10.1175/1520-0450(1983)022<0579:TTSOBA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Alcala, C. M., and A. E. Dessler, 2002: Observations of deep convection in the tropics using the Tropical Rainfall Measuring Mission (TRMM) precipitation radar. J. Geophys. Res., 107, 4792, doi:10.1029/2002JD002457.

    • Search Google Scholar
    • Export Citation
  • Anderson, J. G., D. M. Wilmouth, J. B. Smith, and D. S. Sayres, 2012: UV dosage levels in summer: Increased risk of ozone loss from convectively injected water vapor. Science, 337, 835839, doi:10.1126/science.1222978.

    • Search Google Scholar
    • Export Citation
  • Bedka, K., J. Brunner, R. Dworak, W. Feltz, J. Otkin, and T. Greenwald, 2010: Objective satellite-based detection of overshooting tops using infrared window channel brightness temperature gradients. J. Appl. Meteor. Climatol., 49, 181202, doi:10.1175/2009JAMC2286.1.

    • Search Google Scholar
    • Export Citation
  • Berendes, T. A., J. R. Mecikalski, W. M. MacKenzie Jr., K. M. Bedka, and U. S. Nair, 2008: Convective cloud identification and classification in daytime satellite imagery using standard deviation limited adaptive clustering. J. Geophys. Res., 113, D20207, doi:10.1029/2008JD010287.

    • Search Google Scholar
    • Export Citation
  • Bigelbach, B. C., G. L. Mullendore, and M. Starzec, 2014: Differences in deep convective transport characteristics between quasi-isolated strong convection and mesoscale convective systems using seasonal WRF simulations. J. Geophys. Res. Atmos., 119, 11 44511 455, doi:10.1002/2014JD021875.

    • Search Google Scholar
    • Export Citation
  • Birner, T., 2006: Fine-scale structure of the extratropical tropopause. J. Geophys. Res., 111, D04104, doi:10.1029/2005JD006301.

  • Birner, T., A. Dörnbrack, and U. Schumann, 2002: How sharp is the tropopause at midlatitudes? Geophys. Res. Lett., 29, 1700, doi:10.1029/2002GL015142.

    • Search Google Scholar
    • Export Citation
  • Chagnon, J. M., and S. L. Gray, 2010: A comparison of stratosphere–troposphere transport in convection-permitting and convection-parameterizing simulations of three mesoscale convective systems. J. Geophys. Res., 115, D24318, doi:10.1029/2010JD014421.

    • Search Google Scholar
    • Export Citation
  • Crum, T. D., and R. L. Alberty, 1993: The WSR-88D and the WSR-88D Operational Support Facility. Bull. Amer. Meteor. Soc., 74, 16691687, doi:10.1175/1520-0477(1993)074<1669:TWATWO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Dai, A., F. Giorgi, and K. E. Trenberth, 1999: Observed and model-simulated diurnal cycles of precipitation over the contiguous United States. J. Geophys. Res., 104, 65776402, doi:10.1029/98JD02720.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi:10.1002/qj.828.

  • Dessler, A. E., 2002: The effect of deep, tropical convection on the tropical tropopause layer. J. Geophys. Res., 107, 4033, doi:10.1029/2001JD000511.

    • Search Google Scholar
    • Export Citation
  • Dickerson, R. R., and Coauthors, 1987: Thunderstorms: An important mechanism in the transport of air pollutants. Science, 235, 460465, doi:10.1126/science.235.4787.460.

    • Search Google Scholar
    • Export Citation
  • Elliott, M. S., D. R. MacGorman, T. J. Schuur, and P. L. Heinselman, 2012: An analysis of overshooting top lightning mapping array signatures in supercell thunderstorms. Proc. 22nd Int. Lightning Detection Conf., Broomfield, CO, Vaisala. [Available online at http://www.vaisala.com/en/events/ildcilmc/archive/Pages/ILDC-2012-archive.aspx.]

  • Fischer, H., and Coauthors, 2003: Deep convective injection of boundary layer air into the lowermost stratosphere at midlatitudes. Atmos. Chem. Phys., 3, 739745, doi:10.5194/acp-3-739-2003.

    • Search Google Scholar
    • Export Citation
  • Forster, P., and Coauthors, 2007: Changes in atmospheric constituents and in radiative forcing. Climate Change 2007: The Physical Science Basis, S. Solomon et al., Eds., Cambridge University Press, 129–234.

    • Search Google Scholar
    • Export Citation
  • Fritz, S., and I. Laszlo, 1993: Detection of water vapor in the stratosphere over very high clouds in the tropics. J. Geophys. Res., 98, 22 95922 967, doi:10.1029/93JD01617.

    • Search Google Scholar
    • Export Citation
  • Fromm, M. D., and R. Servranckx, 2003: Transport of forest fire smoke above the tropopause by supercell convection. Geophys. Res. Lett., 30, 1542, doi:10.1029/2002GL016820.

    • Search Google Scholar
    • Export Citation
  • Fujita, T. T., 1974: Overshooting thunderheads observed from ATS and Learjet. University of Chicago Dept. of the Geophysical Sciences Satellite and Mesometeorology Research Project Research Paper 117, 29 pp. [Available online at http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19740018973.pdf.]

  • Gettelman, A., M. L. Salby, and F. Sassi, 2002: Distribution and influence of convection in the tropical tropopause region. J. Geophys. Res., 107, 4080, doi:10.1029/2001JD001048.

    • Search Google Scholar
    • Export Citation
  • Gettelman, A., P. Hoor, L. L. Pan, W. J. Randel, M. I. Hegglin, and T. Birner, 2011: The extratropical upper troposphere and lower stratosphere. Rev. Geophys., 49, doi:10.1029/2011RG000355.

    • Search Google Scholar
    • Export Citation
  • Gray, S. L., 2003: A case study of stratosphere to troposphere transport: The role of convective transport and the sensitivity to model resolution. J. Geophys. Res., 108, 4590, doi:10.1029/2002JD003317.

    • Search Google Scholar
    • Export Citation
  • Hanisco, T. F., and Coauthors, 2007: Observations of deep convective influence on stratospheric water vapor and its isotropic composition. Geophys. Res. Lett., 34, L04814, doi:10.1029/2006GL027899.

    • Search Google Scholar
    • Export Citation
  • Hegglin, M. I., and Coauthors, 2004: Tracing troposphere-to-stratosphere transport above a mid-latitude deep convective system. Atmos. Chem. Phys., 4, 741756, doi:10.5194/acp-4-741-2004.

    • Search Google Scholar
    • Export Citation
  • Holton, J. R., P. H. Haynes, M. E. McIntyre, A. R. Douglass, R. B. Rood, and L. Pfister, 1995: Stratosphere–troposphere exchange. Rev. Geophys., 33, 403–439, doi:10.1029/95RG02097.

  • Homeyer, C. R., 2014: Formation of the enhanced-V infrared cloud-top feature from high-resolution three-dimensional radar observations. J. Atmos. Sci., 71, 332348, doi:10.1175/JAS-D-13-079.1.

    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., and M. R. Kumjian, 2015: Microphysical characteristics of overshooting convection from polarimetric radar observations. J. Atmos. Sci., 72, 870891, doi:10.1175/JAS-D-13-0388.1.

    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., K. P. Bowman, and L. L. Pan, 2010: Extratropical tropopause transition layer characteristics from high-resolution sounding data. J. Geophys. Res., 115, D13108, doi:10.1029/2009JD013664.

  • Homeyer, C. R., L. L. Pan, and M. C. Barth, 2014a: Transport from convective overshooting of the extratropical tropopause and the role of large-scale lower stratosphere stability. J. Geophys. Res., 119, 22202240, doi:10.1002/2013JD020931.

    • Search Google Scholar
    • Export Citation
  • Homeyer, C. R., and Coauthors, 2014b: Convective transport of water vapor into the lower stratosphere observed during double tropopause events. J. Geophys. Res. Atmos., 119, 10 94110 958, doi:10.1002/2014JD021485.

    • Search Google Scholar
    • Export Citation
  • Leone, D. A., R. M. Endlich, J. Petričeks, R. T. H. Collis, and J. R. Perter, 1989: Meteorological considerations used in planning the NEXRAD network. Bull. Amer. Meteor. Soc., 70, 413, doi:10.1175/1520-0477(1989)070<0004:MCUIPT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lindsey, D. T., and L. Grasso, 2008: An effective radius retrieval for thick ice clouds using GOES. J. Appl. Meteor. Climatol., 47, 12221231, doi:10.1175/2007JAMC1612.1.

    • Search Google Scholar
    • Export Citation
  • Martin, D. W., R. A. Kohrs, F. R. Mosher, C. M. Medaglia, and C. Adamo, 2008: Over-ocean validation of the global convective diagnostic. J. Appl. Meteor. Climatol., 47, 525543, doi:10.1175/2007JAMC1525.1.

    • Search Google Scholar
    • Export Citation
  • Mullendore, G. L., D. R. Durran, and J. R. Holton, 2005: Cross-tropopause tracer transport in midlatitude convection. J. Geophys. Res., 110, D06113, doi:10.1029/2004JD005059.

    • Search Google Scholar
    • Export Citation
  • Negri, A. J., 1982: Cloud-top structure of tornado storms on 10 April 1979 from rapid scan and stereo satellite observations. Bull. Amer. Meteor. Soc., 63, 18511859.

    • Search Google Scholar
    • Export Citation
  • Pan, L. L., W. J. Randel, B. L. Gary, M. J. Mahoney, and E. J. Hintsa, 2004: Definitions and sharpness of the extratropical tropopause: A trace gas perspective. J. Geophys. Res., 109, D23103, doi:10.1029/2004JD004982.

  • Pan, L. L., and Coauthors, 2007: Chemical behavior of the tropopause observed during the stratosphere-troposphere analyses of regional transport experiment. J. Geophys. Res., 112, D18110, doi:10.1029/2007JD008645.

  • Poulida, O., R. R. Dickerson, and A. Heymsfield, 1996: Stratosphere-troposphere exchange in a midlatitude mesoscale convective complex: 1. Observations. J. Geophys. Res., 101, 68236836, doi:10.1029/95JD03523.

    • Search Google Scholar
    • Export Citation
  • Ray, E. A., and Coauthors, 2004: Evidence of the effect of summertime midlatitude convection on the subtropical lower stratosphere from CRYSTAL-FACE tracer measurements. J. Geophys. Res., 109, D18304, doi:10.1029/2004JD004655.

    • Search Google Scholar
    • Export Citation
  • Rosenfeld, D., W. L. Woodley, A. Lerner, G. Kelman, and D. T. Lindsey, 2008: Satellite detection of severe convective storms by their retrieved vertical profiles of cloud particle effective radius and thermodynamic phase. J. Geophys. Res., 113, D04208, doi:10.1029/2007JD008600.

    • Search Google Scholar
    • Export Citation
  • Schmetz, J., S. A. Tjemkes, M. Gube, and L. van de Berg, 1997: Monitoring deep convection and convective overshooting with METEOSAT. Adv. Space Res., 19, 433441, doi:10.1016/S0273-1177(97)00051-3.

    • Search Google Scholar
    • Export Citation
  • Schmidt, T., S. Heise, J. Wickert, G. Beyerle, and C. Reigber, 2005: GPS radio occultation with CHAMP and SAC-C: Global monitoring of thermal tropopause parameters. Atmos. Chem. Phys., 5, 14731488, doi:10.5194/acp-5-1473-2005.

    • Search Google Scholar
    • Export Citation
  • Setvak, M., R. M. Rabin, and P. K. Wang, 2007: Contribution of the MODIS instrument to observations of deep convective storms and stratospheric moisture detection in GOES and MSG imagery. Atmos. Res., 83, 505518, doi:10.1016/j.atmosres.2005.09.015.

    • Search Google Scholar
    • Export Citation
  • Setvak, M., K. Bedka, D. T. Lindsey, A. Sokol, Z. Charváta, J. St’ástka, and P. K. Wang, 2013: A-Train observations of deep convective storm tops. Atmos. Res., 123, 229248, doi:10.1016/j.atmosres.2012.06.020.

    • Search Google Scholar
    • Export Citation
  • Stohl, A., H. Wernli, P. James, M. Bourqui, C. Forster, M. A. Liniger, P. Seibert, and M. Sprenger, 2003: A new perspective of stratosphere–troposphere exchange. Bull. Amer. Meteor. Soc., 84, 15651573, doi:10.1175/BAMS-84-11-1565.

    • Search Google Scholar
    • Export Citation
  • Wang, P. K., 2003: Moisture plumes above thunderstorm anvils and their contributions to cross-tropopause transport of water vapor in midlatitudes. J. Geophys. Res., 108, 4194, doi:10.1029/2002JD002581.

    • Search Google Scholar
    • Export Citation
  • Wang, S., and L. M. Polvani, 2011: Double tropopause formation in idealized baroclinic life cycles: The key role of an initial tropopause inversion layer. J. Geophys. Res., 116, D05108, doi:10.1029/2010JD015118.

  • WMO, 1957: Meteorology—A three-dimensional science: Second session of the Commission for Aerology. WMO Bull., IV (4), 134138.

  • Wong, S., and W.-C. Wang, 2000: Interhemispheric asymmetry in the seasonal variation of the zonal mean tropopause. J. Geophys. Res., 105, 26 64526 659, doi:10.1029/2000JD900475.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 2834 1296 80
PDF Downloads 536 116 21