Constraining a 3DVAR Radar Data Assimilation System with Large-Scale Analysis to Improve Short-Range Precipitation Forecasts

Eder Paulo Vendrasco National Institute for Space Research (INPE), Cachoeira Paulista, Sao PĂŁulo, Brazil

Search for other papers by Eder Paulo Vendrasco in
Current site
Google Scholar
PubMed
Close
,
Juanzhen Sun National Center for Atmospheric Research,* Boulder, Colorado

Search for other papers by Juanzhen Sun in
Current site
Google Scholar
PubMed
Close
,
Dirceu Luis Herdies National Institute for Space Research (INPE), Cachoeira Paulista, SĂŁo Paulo, Brazil

Search for other papers by Dirceu Luis Herdies in
Current site
Google Scholar
PubMed
Close
, and
Carlos Frederico de Angelis National Center for Monitoring and Early Warning of Natural Disaster, Cachoeira Paulista, SĂŁo Paulo, Brazil

Search for other papers by Carlos Frederico de Angelis in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

It is known from previous studies that radar data assimilation can improve short-range forecasts of precipitation, mainly when radial wind and reflectivity are available. However, from the authors’ experience radar data assimilation, when using the three-dimensional variational data assimilation (3DVAR) technique, can produce spurious precipitation results and large errors in the position and amount of precipitation. One possible reason for the problem is attributed to the lack of proper balance in the dynamical and microphysical fields. This work attempts to minimize this problem by adding a large-scale analysis constraint in the cost function. The large-scale analysis constraint is defined by the departure of the high-resolution 3DVAR analysis from a coarser-resolution large-scale analysis. It is found that this constraint is able to guide the assimilation process in such a way that the final result still maintains the large-scale pattern, while adding the convective characteristics where radar data are available. As a result, the 3DVAR analysis with the constraint is more accurate when verified against an independent dataset. The performance of this new constraint on improving precipitation forecasts is tested using six convective cases and verified against radar-derived precipitation by employing four skill indices. All of the skill indices show improved forecasts when using the methodology presented in this paper.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Eder Paulo Vendrasco, Rodovia Presidente Dutra, Km 39, Cachoeira Paulista, SĂŁo Paulo CEP 16300-000, Brazil. E-mail: eder.vendrasco@cptec.inpe.br

Abstract

It is known from previous studies that radar data assimilation can improve short-range forecasts of precipitation, mainly when radial wind and reflectivity are available. However, from the authors’ experience radar data assimilation, when using the three-dimensional variational data assimilation (3DVAR) technique, can produce spurious precipitation results and large errors in the position and amount of precipitation. One possible reason for the problem is attributed to the lack of proper balance in the dynamical and microphysical fields. This work attempts to minimize this problem by adding a large-scale analysis constraint in the cost function. The large-scale analysis constraint is defined by the departure of the high-resolution 3DVAR analysis from a coarser-resolution large-scale analysis. It is found that this constraint is able to guide the assimilation process in such a way that the final result still maintains the large-scale pattern, while adding the convective characteristics where radar data are available. As a result, the 3DVAR analysis with the constraint is more accurate when verified against an independent dataset. The performance of this new constraint on improving precipitation forecasts is tested using six convective cases and verified against radar-derived precipitation by employing four skill indices. All of the skill indices show improved forecasts when using the methodology presented in this paper.

The National Center for Atmospheric Research is sponsored by the National Science Foundation.

Corresponding author address: Eder Paulo Vendrasco, Rodovia Presidente Dutra, Km 39, Cachoeira Paulista, SĂŁo Paulo CEP 16300-000, Brazil. E-mail: eder.vendrasco@cptec.inpe.br
Save
  • Aksoy, A., D. C. Dowell, and C. Snyder, 2009: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part I: Storm-scale analyses. Mon. Wea. Rev., 137, 1805–1824, doi:10.1175/2008MWR2691.1.

    • Search Google Scholar
    • Export Citation
  • Aksoy, A., D. C. Dowell, and C. Snyder, 2010: A multicase comparative assessment of the ensemble Kalman filter for assimilation of radar observations. Part II: Short-range ensemble forecasts. Mon. Wea. Rev., 138, 1273–1292, doi:10.1175/2009MWR3086.1.

    • Search Google Scholar
    • Export Citation
  • Barker, D. M., W. Huang, Y.-R. Guo, A. J. Bourgeois, and Q. N. Xiao, 2004: A three-dimensional variational (3DVAR) data assimilation system for use with MM5: Implementation and initial results. Mon. Wea. Rev., 132, 897–914, doi:10.1175/1520-0493(2004)132<0897:ATVDAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Battan, L. J., 1973: Radar Observation of the Atmosphere. University of Chicago Press, 324 pp.

  • Bloom, S. C., L. L. Takacs, A. M. da Silva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 1256–1271, doi:10.1175/1520-0493(1996)124<1256:DAUIAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bouttier, F., 2009: Fine scale versus large scale data assimilation—A discussion. Fifth WMO Symposium on Data Assimilation, Melbourne, VIC, Australia, WMO World Weather Research Programme, 8 pp. [Available online at https://www.researchgate.net/publication/268376800_Fine_scale_versus_large_scale_data_assimilation_-a_discussion.]

  • Bryan, G. H., and H. Morrison, 2012: Sensitivity of a simulated squall line to horizontal resolution and parameterization of microphysics. Mon. Wea. Rev., 140, 202–225, doi:10.1175/MWR-D-11-00046.1.

    • Search Google Scholar
    • Export Citation
  • Caya, A., J. Sun, and C. Snyder, 2005: A comparison between the 4DVAR and the ensemble Kalman filter techniques for radar data assimilation. Mon. Wea. Rev., 133, 3081–3094, doi:10.1175/MWR3021.1.

    • Search Google Scholar
    • Export Citation
  • Chen, M., and X.-Y. Huang, 2006: Digital filter initialization for MM5. Mon. Wea. Rev., 134, 1222–1236, doi:10.1175/MWR3117.1.

  • Coumou, D., and S. Rahmstorf, 2012: A decade of weather extremes. Nat. Climate Change, 2, 491–496, doi:10.1038/nclimate1452.

  • Courtier, P., J. N. Thepaut, and A. Hollingsworth, 1994: A strategy for operational implementation of 4D-Var, using an incremental approach. Quart. J. Roy. Meteor. Soc., 120, 1367–1387, doi:10.1002/qj.49712051912.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Evensen, G., 1994: Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10 143–10 162, doi:10.1029/94JC00572.

    • Search Google Scholar
    • Export Citation
  • Gao, J., M. Xue, A. Shapiro, and K. K. Droegemeier, 1999: A variational analysis for the retrieval of three-dimensional mesoscale wind fields from two Doppler radars. Mon. Wea. Rev., 127, 2128–2142, doi:10.1175/1520-0493(1999)127<2128:AVMFTA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Gao, J., M. Xue, K. Brewster, and K. K. Droegemeier, 2004: A three-dimensional variational data analysis method with recursive filter for Doppler radars. J. Atmos. Oceanic Technol., 21, 457–469, doi:10.1175/1520-0426(2004)021<0457:ATVDAM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Guo, Y. R., S. Y. Fan, W. Wang, M. Chen, X. Y. Huang, Y. C. Wang, and Y. H. Kuo, 2007: Application of WRFVAR (3dVar) to a high resolution (3-km) model over Beijing area. Eighth WRF Users’ Workshop, Boulder, CO, UCAR, 5 pp. [Available online at http://www2.mmm.ucar.edu/wrf/users/workshops/WS2007/abstracts/p2-5_Guo.pdf.]

  • Ha, J.-H., and D.-K. Lee, 2012: Effect of length scale tuning of background error in WRF-3DVAR system on assimilation of high-resolution surface data for heavy rainfall simulation. Adv. Atmos. Sci., 29-6, 1142–1158.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., and J. O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.

    • Search Google Scholar
    • Export Citation
  • Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341, doi:10.1175/MWR3199.1.

    • Search Google Scholar
    • Export Citation
  • Hsiao, L.-F., S.-S. Chen, Y.-H. Kuo, Y.-R. Guo, T.-C. Yeh, J.-S. Hong, C.-T. Fong, and C.-S. Lee, 2012: Application of WRF 3DVAR to operational typhoon prediction in Taiwan: Impact of outer loop and partial cycling approaches. Wea. Forecasting, 27, 1249–1263, doi:10.1175/WAF-D-11-00131.1.

    • Search Google Scholar
    • Export Citation
  • Kawabata, T., H. Seko, K. Saito, T. Kuroda, K. Tamiya, T. Tsuyuki, Y. Honda, and Y. Wakazuki, 2007: An assimilation and forecasting experiment of the Nerima heavy rainfall with a cloud-resolving nonhydrostatic 4-dimensional variational data assimilation system. J. Meteor. Soc. Japan, 85, 255–276, doi:10.2151/jmsj.85.255.

    • Search Google Scholar
    • Export Citation
  • Lee, M.-S., Y.-H. Kuo, D. M. Barker, and E. Lim, 2006: Incremental analysis updates initialization technique applied to 10-km MM5 and MM5 3DVAR. Mon. Wea. Rev., 134, 1389–1404, doi:10.1175/MWR3129.1.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A., 1986: Analysis methods for numerical weather prediction. Quart. J. Roy. Meteor. Soc., 112, 1177–1194, doi:10.1002/qj.49711247414.

    • Search Google Scholar
    • Export Citation
  • Lorenc, A., 1988: A practical approximation to optimal four-dimensional data assimilation. Mon. Wea. Rev., 116, 730–745, doi:10.1175/1520-0493(1988)116<0730:APATOF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Lynch, P., 1993: Digital filters for numerical weather prediction. HIRLAM Tech. Rep. 10, Finnish Meteorological Institute, 52 pp. [Available online at http://mathsci.ucd.ie/~plynch/Publications/HIRLAM_Tech_Report_10.pdf.]

  • Lynch, P., and X.-Y. Huang, 1992: Initialization of the HIRLAM model using a digital filter. Mon. Wea. Rev., 120, 1019–1034, doi:10.1175/1520-0493(1992)120<1019:IOTHMU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Machado, L. A., and Coauthors, 2014: The Chuva project: How does convection vary across Brazil? Bull. Amer. Meteor. Soc., 95, 1365–1380, doi:10.1175/BAMS-D-13-00084.1.

    • Search Google Scholar
    • Export Citation
  • Maity, R., S. Dey, and P. Varun, 2015: Alternative approach for estimation of precipitation using Doppler weather radar data. J. Hydrol. Eng., 20, 04 01 5006, doi:10.1061/(ASCE)HE.1943-5584.0001146.

    • Search Google Scholar
    • Export Citation
  • Marshall, J. S., and W. M. Palmer, 1948: The distribution of raindrops with size. J. Meteor., 5, 165–166, doi:10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Ming, C., S. Y. Fan, J. Zhong, X. Y. Huang, Y. R. Guo, W. Wang, Y. Wang, and B. A. Kuo, 2009: A WRF-based rapid updating cycling forecast system of BMB and its performance during the summer and Olympic Games 2008. Symp. on Nowcasting and Very Short Term Forecasting, Whistler, BC, Canada, WMO. [Available online at http://www2.mmm.ucar.edu/wrf/users/workshops/WS2010/presentations/session%203/3A-5_MinChen.pdf.]

  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 663–16 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Parrish, D. F., and J. C. Derber, 1992: The National Meteorological Center’s spectral statistical-interpolation analysis system. Mon. Wea. Rev., 120, 1747–1763, doi:10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Reen, B. P., 2007: Data assimilation strategies and land-surface heterogeneity effects in the planet boundary layer. Ph.D. thesis, The Pennsylvania State University, 246 pp.

  • Roberts, N. M., and H. W. Lean, 2008: Scale-selective verification of rainfall accumulations from high-resolution forecasts of convective events. Mon. Wea. Rev., 136, 78–97, doi:10.1175/2007MWR2123.1.

    • Search Google Scholar
    • Export Citation
  • Saha, S., and Coauthors, 2010: The NCEP Climate Forecast System Reanalysis. Bull. Amer. Meteor. Soc., 91, 1015–1057, doi:10.1175/2010BAMS3001.1.

    • Search Google Scholar
    • Export Citation
  • Sasaki, Y., 1970: Some basic formalisms in numerical variational analysis. Mon. Wea. Rev., 98, 875–883, doi:10.1175/1520-0493(1970)098<0875:SBFINV>2.3.CO;2.

    • Search Google Scholar
    • Export Citation
  • Shimizu, S., M. Maki, T. Maesake, K. Iwanami, and S. Shimada, 2011: Short-range forecast using MPradar network and 3DVAR assimilation for the heavy rainfall in North Tokyo on July 5th 2010. Japan Geoscience Union Meeting 2011, Chiba, Japan, Japan Geoscience Union, UO22-P11. [Available online at http://www2.jpgu.org/meeting/2011/yokou/U022-P11_E.pdf.]

  • Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN–475+STR, 113 pp., doi:10.5065/D68S4MVH.

  • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 1663–1677, doi:10.1175//2555.1.

    • Search Google Scholar
    • Export Citation
  • Stauffer, D. R., and Nelson L.Seaman, 1990: Use of four-dimensional data assimilation in a limited-area mesoscale model. Part I: Experiments with synoptic-scale data. Mon. Wea. Rev., 118, 1250–1277, doi:10.1175/1520-0493(1990)118<1250:UOFDDA>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sugimoto, S., N. A. Crook, J. Sun, Q. Xiao, and D. M. Barker, 2009: An examination of WRF 3DVAR radar data assimilation on its capability in retrieving unobserved variables and forecasting precipitation through observing system simulation experiments. Mon. Wea. Rev., 137, 4011–4029, doi:10.1175/2009MWR2839.1.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and N. A. Crook, 1997: Dynamical and microphysical retrieval from Doppler radar observations using a cloud model and its adjoint. Part I: Model development and simulated data experiments. J. Atmos. Sci., 54, 1642–1661, doi:10.1175/1520-0469(1997)054<1642:DAMRFD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Sun, J., and H. Wang, 2013: Radar data assimilation with WRF 4D-Var. Part II: Comparison with 3D-Var for a squall line over the U.S. Great Plains. Mon. Wea. Rev., 141, 2245–2264, doi:10.1175/MWR-D-12-00169.1.

    • Search Google Scholar
    • Export Citation
  • Sun, J., S. B. Trier, Q. Xiao, M. L. Weisman, H. Wang, Z. Ying, M. Xu, and Y. Zhang, 2012: Sensitivity of 0–12-h warm-season precipitation forecasts over the central United States to model initialization. Wea. Forecasting, 27, 832–855, doi:10.1175/WAF-D-11-00075.1.

    • Search Google Scholar
    • Export Citation
  • Sun, J., H. Wang, W. Tong, Y. Zhang, C.-Y. Lin, and D. Xu, 2016: Comparison of the impacts of momentum control variables on high-resolution variational data assimilation and precipitation forecasting. Mon. Wea. Rev., 144, 149–169, doi:10.1175/MWR-D-14-00205.1.

    • Search Google Scholar
    • Export Citation
  • Sun, J.-H., X.-L. Zhang, J. Wei, and S.-X. Zhao, 2005: A study on severe heavy rainfall in north China during the 1990s (in Chinese). Climatic Environ. Res, 10, 492–506.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 1789–1807, doi:10.1175/MWR2898.1.

    • Search Google Scholar
    • Export Citation
  • Tong, M., and M. Xue, 2008: Simultaneous estimation of microphysical parameters and atmospheric state with simulated radar data and ensemble square-root Kalman filter. Part II: Parameter estimation experiments. Mon. Wea. Rev., 136, 1649–1668, doi:10.1175/2007MWR2071.1.

    • Search Google Scholar
    • Export Citation
  • Tong, W., J. Sun, G. Li, and H. Wang, 2014: A study on the assimilation cycling configuration for convective precipitation forecast using WRF 3DVAR. 15th WRF Users’ Workshop, Boulder, CO, UCAR, 6A.5. [Available online at http://www2.mmm.ucar.edu/wrf/users/workshops/WS2014/ppts/6A.5.pdf.]

  • Wang, H., J. Sun, S. Y. Fan, and X. Y. Huang, 2013a: Indirect assimilation of radar reflectivity with WRF 3D-VAR and its impact on prediction of four summertime convective events. J. Appl. Meteor. Climatol., 52, 889–902, doi:10.1175/JAMC-D-12-0120.1.

    • Search Google Scholar
    • Export Citation
  • Wang, H., J. Sun, X. Zhang, X. Huang, and T. Auligne, 2013b: Radar data assimilation with WRF 4D-Var. Part I: System development and preliminary testing. Mon. Wea. Rev., 141, 2224–2244, doi:10.1175/MWR-D-12-00168.1.

    • Search Google Scholar
    • Export Citation
  • Xiao, Q., Y. Kuo, J. Sun, W. Lee, D. M. Barker, and L. Eunha, 2007: An approach of radar reflectivity data assimilation and its assessment with the inland QPF of Typhoon Rusa (2002) at landfall. J. Appl. Meteor. Climatol., 46, 14–22, doi:10.1175/JAM2439.1.

    • Search Google Scholar
    • Export Citation
  • Xu, J.-Y., and Q. Zhong, 2009: The effect of error growth and propagation on the predictability of quantitative precipitation in a cloud-resolving model. Atmos. Oceanic Sci. Lett., 2, 79–84, doi:10.1080/16742834.2009.11446782.

    • Search Google Scholar
    • Export Citation
  • Zou, X., Y.-H. Kuo, and Y.-R. Guo, 1995: Assimilation of atmospheric radio refractivity using a nonhydrostatical adjoint model. Mon. Wea. Rev., 123, 2229–2249, doi:10.1175/1520-0493(1995)123<2229:AOARRU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zupanski, M., 2005: Maximum likelihood ensemble filter: Theoretical aspects. Mon. Wea. Rev., 133, 1710–1726, doi:10.1175/MWR2946.1.

    • Search Google Scholar
    • Export Citation