Assessing Seasonality in the Surface Urban Heat Island of London

Bin Zhou Potsdam Institute for Climate Impact Research, Potsdam, Germany

Search for other papers by Bin Zhou in
Current site
Google Scholar
PubMed
Close
,
Dirk Lauwaet Vlaamse Instelling voor Technologisch Onderzoek, Mol, Belgium

Search for other papers by Dirk Lauwaet in
Current site
Google Scholar
PubMed
Close
,
Hans Hooyberghs Vlaamse Instelling voor Technologisch Onderzoek, Mol, Belgium

Search for other papers by Hans Hooyberghs in
Current site
Google Scholar
PubMed
Close
,
Koen De Ridder Vlaamse Instelling voor Technologisch Onderzoek, Mol, Belgium

Search for other papers by Koen De Ridder in
Current site
Google Scholar
PubMed
Close
,
Jürgen P. Kropp Potsdam Institute for Climate Impact Research, and Department of Geo- and Environmental Sciences, University of Potsdam, Potsdam, Germany

Search for other papers by Jürgen P. Kropp in
Current site
Google Scholar
PubMed
Close
, and
Diego Rybski Potsdam Institute for Climate Impact Research, Potsdam, Germany

Search for other papers by Diego Rybski in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This paper assesses the seasonality of the urban heat island (UHI) effect in the Greater London area (United Kingdom). Combining satellite-based observations and urban boundary layer climate modeling with the UrbClim model, the authors are able to address the seasonality of UHI intensity, on the basis of both land surface temperature (LST) and 2-m air temperature, for four individual times of the day (0130, 1030, 1330, and 2230 local time) and the daily means derived from them. An objective of this paper is to investigate whether the UHI intensities that are based on both quantities exhibit a similar hysteresis-like trajectory that is observed for LST when plotting the UHI intensity against the background temperature. The results show that the UrbClim model can satisfactorily reproduce both the observed urban–rural LSTs and 2-m air temperatures as well as their differences and the hysteresis in the surface UHI. The hysteresis-like seasonality is largely absent in both the observed and modeled 2-m air temperatures, however. A sensitivity simulation of the UHI intensity to incoming solar radiation suggests that the hysteresis of the LST can mainly be attributed to the seasonal variation in incoming solar radiation.

Denotes Open Access content.

Corresponding author address: Diego Rybski, Potsdam Institute for Climate Impact Research, P.O. Box 601203, Potsdam 14412, Germany. E-mail: ca-dr@rybski.de

Abstract

This paper assesses the seasonality of the urban heat island (UHI) effect in the Greater London area (United Kingdom). Combining satellite-based observations and urban boundary layer climate modeling with the UrbClim model, the authors are able to address the seasonality of UHI intensity, on the basis of both land surface temperature (LST) and 2-m air temperature, for four individual times of the day (0130, 1030, 1330, and 2230 local time) and the daily means derived from them. An objective of this paper is to investigate whether the UHI intensities that are based on both quantities exhibit a similar hysteresis-like trajectory that is observed for LST when plotting the UHI intensity against the background temperature. The results show that the UrbClim model can satisfactorily reproduce both the observed urban–rural LSTs and 2-m air temperatures as well as their differences and the hysteresis in the surface UHI. The hysteresis-like seasonality is largely absent in both the observed and modeled 2-m air temperatures, however. A sensitivity simulation of the UHI intensity to incoming solar radiation suggests that the hysteresis of the LST can mainly be attributed to the seasonal variation in incoming solar radiation.

Denotes Open Access content.

Corresponding author address: Diego Rybski, Potsdam Institute for Climate Impact Research, P.O. Box 601203, Potsdam 14412, Germany. E-mail: ca-dr@rybski.de
Save
  • Arnfield, J., 2003: Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol., 23, 126, doi:10.1002/joc.859.

    • Search Google Scholar
    • Export Citation
  • Büttner, G., T. Soukup, and A. Sousa, 2007: CLC2006 technical guidelines. Tech. Rep. 17, European Environment Agency, 66 pp., doi:10.2800/12134.

  • Cui, Y. Y., and B. de Foy, 2012: Seasonal variations of the urban heat island at the surface and the near-surface and reductions due to urban vegetation in Mexico City. J. Appl. Meteor. Climatol., 51, 855868, doi:10.1175/JAMC-D-11-0104.1.

    • Search Google Scholar
    • Export Citation
  • Danielson, J. J., and D. B. Gesch, 2011: Global multi-resolution terrain elevation data 2010 (GMTED2010). USGS Open-File Rep. 2011-1073, 26 pp. [Available online at http://pubs.usgs.gov/of/2011/1073/pdf/of2011-1073.pdf.]

  • De Ridder, K., 2006: Testing Brutsaert’s temperature roughness parameterization for representing urban surfaces in atmospheric models. Geophys. Res. Lett., 33, L13403, doi:10.1029/2006GL026572.

  • De Ridder, K., and G. Schayes, 1997: The IAGL land surface model. J. Appl. Meteor., 36, 167182, doi:10.1175/1520-0450(1997)036<0167:TILSM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • De Ridder, K., and Coauthors, 2008: Simulating the impact of urban sprawl on air quality and population exposure in the German Ruhr area. Part I: Reproducing the base state. Atmos. Environ., 42, 70597069, doi:10.1016/j.atmosenv.2008.06.045.

    • Search Google Scholar
    • Export Citation
  • De Ridder, K., C. Bertrand, G. Casanova, and W. Lefebvre, 2012: Exploring a new method for the retrieval of urban thermophysical properties using thermal infrared remote sensing and deterministic modeling. J. Geophys. Res., 117, D17108, doi:10.1029/2011JD017194.

  • De Ridder, K., D. Lauwaet, and B. Maiheu, 2015: Urbclim—A fast urban boundary layer climate model. Urban Climate, 12, 2148, doi:10.1016/j.uclim.2015.01.001.

    • Search Google Scholar
    • Export Citation
  • Estournel, C., R. Vehil, D. Guedalia, J. Fontan, and A. Druilhet, 1983: Observations and modeling of downward radiative fluxes (solar and infrared) in urban/rural areas. J. Climate Appl. Meteor., 22, 134142, doi:10.1175/1520-0450(1983)022<0134:OAMODR>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Fan, Y., 2004: Climate Prediction Center global monthly soil moisture data set at 0.5° for 1948 to present. J. Geophys. Res., 109, D10102, doi:10.1029/2003JD004345.

  • Figuerola, P. I., and N. A. Mazzeo, 1998: Urban-rural temperature differences in Buenos Aires. Int. J. Climatol., 18, 17091723, doi:10.1002/(SICI)1097-0088(199812)18:15<1709::AID-JOC338>3.0.CO;2-I.

    • Search Google Scholar
    • Export Citation
  • Gallo, K., R. Hale, D. Tarpley, and Y. Yu, 2011: Evaluation of the relationship between air and land surface temperature under clear- and cloudy-sky conditions. J. Appl. Meteor. Climatol., 50, 767775, doi:10.1175/2010JAMC2460.1.

    • Search Google Scholar
    • Export Citation
  • Garratt, J. R., 1992: The Atmospheric Boundary Layer. Cambridge University Press, 316 pp.

  • Gutman, G., and A. Ignatov, 1998: The derivation of the green vegetation fraction from NOAA/AVHRR data for use in numerical weather prediction models. Int. J. Remote Sens., 19, 15331543, doi:10.1080/014311698215333.

    • Search Google Scholar
    • Export Citation
  • Ichinose, T., K. Shimodozono, and K. Hanaki, 1999: Impact of anthropogenic heat on urban climate in Tokyo. Atmos. Environ., 33, 38973909, doi:10.1016/S1352-2310(99)00132-6.

    • Search Google Scholar
    • Export Citation
  • Imhoff, M. L., P. Zhang, R. E. Wolfe, and L. Bounoua, 2010: Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sens. Environ., 114, 504513, doi:10.1016/j.rse.2009.10.008.

    • Search Google Scholar
    • Export Citation
  • Jauregui, E., 1997: Heat island development in Mexico City. Atmos. Environ., 31, 38213831, doi:10.1016/S1352-2310(97)00136-2.

  • Jin, M., and R. E. Dickinson, 2010: Land surface skin temperature climatology: Benefitting from the strengths of satellite observations. Environ. Res. Lett., 5, 044004, doi:10.1088/1748-9326/5/4/044004.

  • Kalnay, E., and M. Cai, 2003: Impact of urbanization and land-use change on climate. Nature, 423, 528531, doi:10.1038/nature01675.

  • Kanda, M., M. Kanega, T. Kawai, R. Moriwaki, and H. Sugawara, 2007: Roughness lengths for momentum and heat derived from outdoor urban scale models. J. Appl. Meteor. Climatol., 46, 10671079, doi:10.1175/JAM2500.1.

    • Search Google Scholar
    • Export Citation
  • Kim, Y.-H., and J.-J. Baik, 2005: Spatial and temporal structure of the urban heat island in Seoul. J. Appl. Meteor., 44, 591605, doi:10.1175/JAM2226.1.

    • Search Google Scholar
    • Export Citation
  • Norman, J. M., and F. Becker, 1995: Terminology in thermal infrared remote sensing of natural surfaces. Remote Sens. Rev., 12, 159173, doi:10.1080/02757259509532284.

    • Search Google Scholar
    • Export Citation
  • Nunez, M., I. Eliasson, and J. Lindgren, 2000: Spatial variations of incoming longwave radiation in Göteborg, Sweden. Theor. Appl. Climatol., 67, 181192, doi:10.1007/s007040070007.

    • Search Google Scholar
    • Export Citation
  • Oke, T. R., 1982: The energetic basis of the urban heat island. Quart. J. Roy. Meteor. Soc., 108, 124, doi:10.1002/qj.49710845502.

  • Oke, T. R., 1987: Boundary Layer Climates. 2nd ed. Methuen, 435 pp.

  • Oke, T. R., G. T. Johnson, D. G. Steyn, and I. D. Watson, 1991: Simulation of surface urban heat islands under ‘ideal’ conditions at night part 2: Diagnosis of causation. Bound.-Layer Meteor., 56, 339358, doi:10.1007/BF00119211.

    • Search Google Scholar
    • Export Citation
  • Parker, D. E., 2010: Urban heat island effects on estimates of observed climate change. Wiley Interdiscip. Rev. Climate Change, 1, 123133, doi:10.1002/wcc.21.

    • Search Google Scholar
    • Export Citation
  • Peng, S., and Coauthors, 2012: Surface urban heat island across 419 global big cities. Environ. Sci. Technol., 46, 696703, doi:10.1021/es2030438.

    • Search Google Scholar
    • Export Citation
  • Pielke, R. A., Sr., 2002: Mesoscale Meteorological Modeling. 2nd ed. International Geophysics Series, Vol. 78, Academic Press, 676 pp.

  • Piringer, M., and Coauthors, 2007: The surface energy balance and the mixing height in urban areas—Activities and recommendations of COST-Action 715. Bound.-Layer Meteor., 124, 324, doi:10.1007/s10546-007-9170-0.

    • Search Google Scholar
    • Export Citation
  • Pongrácz, R., J. Bartholy, and Z. Dezs, 2010: Application of remotely sensed thermal information to urban climatology of Central European cities. Phys. Chem. Earth, 35, 9599, doi:10.1016/j.pce.2010.03.004.

    • Search Google Scholar
    • Export Citation
  • Prigent, C., A. Filipe, and B. R. William, 2003: Land surface skin temperatures from a combined analysis of microwave and infrared satellite observations for an all-weather evaluation of the differences between air and skin temperatures. J. Geophys. Res., 108, 4310, doi:10.1029/2002JD002301.

    • Search Google Scholar
    • Export Citation
  • Roth, M., 2007: Review of urban climate research in (sub)tropical regions. Int. J. Climatol., 27, 18591873, doi:10.1002/joc.1591.

  • Rouse, W. R., D. Noad, and J. McCutcheon, 1973: Radiation, temperature and atmospheric emissivities in a polluted urban atmosphere at Hamilton, Ontario. J. Appl. Meteor., 12, 798807, doi:10.1175/1520-0450(1973)012<0798:RTAAEI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rozenfeld, H. D., D. Rybski, J. S. Andrade Jr., M. Batty, H. E. Stanley, and H. A. Makse, 2008: Laws of population growth. Proc. Natl. Acad. Sci. USA, 105, 18 70218 707, doi:10.1073/pnas.0807435105.

    • Search Google Scholar
    • Export Citation
  • Rozenfeld, H. D., D. Rybski, X. Gabaix, and H. A. Makse, 2011: The area and population of cities: New insights from a different perspective on cities. Amer. Econ. Rev., 101, 22052225, doi:10.1257/aer.101.5.2205.

    • Search Google Scholar
    • Export Citation
  • Runnalls, K., and T. Oke, 2000: Dynamics and controls of the near-surface heat island of Vancouver, British Columbia. Phys. Geogr., 21, 283304, doi:10.1080/02723646.2000.10642711.

    • Search Google Scholar
    • Export Citation
  • Sailor, D. J., and L. Lu, 2004: A top-down methodology for developing diurnal and seasonal anthropogenic heating profiles for urban areas. Atmos. Environ., 38, 27372748, doi:10.1016/j.atmosenv.2004.01.034.

    • Search Google Scholar
    • Export Citation
  • Schatz, J., and C. J. Kucharik, 2014: Seasonality of the urban heat island effect in Madison, Wisconsin. J. Appl. Meteor. Climatol., 53, 23712386, doi:10.1175/JAMC-D-14-0107.1.

    • Search Google Scholar
    • Export Citation
  • Simon, A., J. Fons, R. Milego, and B. Georgi, 2010: Urban Morphological Zones version F2v0: Definition and procedural steps. Final rep., ETC/LUSI and EEA, 27 pp. [Available online at http://www.eea.europa.eu/data-and-maps/data/urban-morphological-zones-1990/note/note/download.]

  • Stewart, I. D., and T. R. Oke, 2012: Local climate zones for urban temperature studies. Bull. Amer. Meteor. Soc., 93, 18791900, doi:10.1175/BAMS-D-11-00019.1.

    • Search Google Scholar
    • Export Citation
  • Tomlinson, C. J., L. Chapman, J. E. Thornes, and C. Baker, 2011: Remote sensing land surface temperature for meteorology and climatology: A review. Meteor. Appl., 18, 296306, doi:10.1002/met.287.

    • Search Google Scholar
    • Export Citation
  • Tran, H., D. Uchihama, S. Ochi, and Y. Yasuoka, 2006: Assessment with satellite data of the urban heat island effects in Asian mega cities. Int. J. Appl. Earth Obs. Geoinf., 8, 3448, doi:10.1016/j.jag.2005.05.003.

    • Search Google Scholar
    • Export Citation
  • UN-HABITAT, 2011: Cities and Climate Change: Global Report on Human Settlements 2011. UN-HABITAT, 300 pp.

  • Unger, J., Z. Sümeghy, and J. Zoboki, 2001: Temperature cross-section features in an urban area. Atmos. Res., 58, 117127, doi:10.1016/S0169-8095(01)00087-4.

    • Search Google Scholar
    • Export Citation
  • Voogt, J., and T. Oke, 2003: Thermal remote sensing of urban climates. Remote Sens. Environ., 86, 370384, doi:10.1016/S0034-4257(03)00079-8.

    • Search Google Scholar
    • Export Citation
  • Wan, Z., 2008: New refinements and validation of the MODIS Land-Surface Temperature/Emissivity products. Remote Sens. Environ., 112, 5974, doi:10.1016/j.rse.2006.06.026.

    • Search Google Scholar
    • Export Citation
  • Weng, Q., 2009: Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS J. Photogramm. Remote Sens., 64, 335344, doi:10.1016/j.isprsjprs.2009.03.007.

    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., 2003: Past and projected trends in London’s urban heat island. Weather, 58, 251260, doi:10.1256/wea.183.02.

  • Wouters, H., M. Demuzere, K. De Ridder, and N. P. M. van Lipzig, 2015: The impact of impervious water-storage parametrization on urban climate modelling. Urban Climate, 11, 2450, doi:10.1016/j.uclim.2014.11.005.

    • Search Google Scholar
    • Export Citation
  • Zhou, B., D. Rybski, and J. P. Kropp, 2013: On the statistics of urban heat island intensity. Geophys. Res. Lett., 40, 54865491, doi:10.1002/2013GL057320.

    • Search Google Scholar
    • Export Citation
  • Zhou, Y., and J. M. Shepherd, 2010: Atlanta’s urban heat island under extreme heat conditions and potential mitigation strategies. Nat. Hazards, 52, 639668, doi:10.1007/s11069-009-9406-z.

    • Search Google Scholar
    • Export Citation