Diurnal Course of Carbon Dioxide Mixing Ratios in the Urban Boundary Layer in Response to Surface Emissions

B. Crawford Department of Geography, The University of British Columbia, Vancouver, British Columbia, Canada

Search for other papers by B. Crawford in
Current site
Google Scholar
PubMed
Close
,
A. Christen Department of Geography, The University of British Columbia, Vancouver, British Columbia, Canada

Search for other papers by A. Christen in
Current site
Google Scholar
PubMed
Close
, and
I. McKendry Department of Geography, The University of British Columbia, Vancouver, British Columbia, Canada

Search for other papers by I. McKendry in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

Observations of carbon dioxide (CO2) mixing ratios in the urban boundary layer (UBL) are rare, even though there is potential for such measurements to be used to monitor city-scale net CO2 emissions. This work presents a unique dataset of CO2 mixing ratios observed in the UBL above Vancouver, British Columbia, Canada, by means of a tethered balloon system over a continuous 24-h summertime period. Vertical profiles of CO2 mixing ratios are found to vary according to UBL thermal structure and mechanical dynamics (development of convective and nocturnal boundary layers, vertical mixing from mechanical turbulence, horizontal advection from land–sea thermal breezes, and vertical entrainment). A box model is applied to quantify net city-scale surface emissions to the UBL volume using the measured rate of change of UBL CO2 mixing ratios and estimated CO2 advection and entrainment fluxes. The diurnal course of city-scale net emissions predicted by the model is similar to simultaneous local-scale eddy-covariance CO2 flux measurements, although there are relatively large uncertainties in hourly model calculations of horizontal advection and vertical entrainment fluxes due to inputs of regional background CO2 mixing ratios. Daily city-scale emissions totals predicted by the model (20.2 gC m−2 day−1) are 35% larger than those measured simultaneously on an urban local-scale eddy-covariance flux tower and are within 32% of a spatially scaled municipal greenhouse gas inventory. However, these methods are not expected to agree exactly because they represent different spatial source areas and include different CO2 source and sink processes.

Corresponding author address: B. Crawford, Dept. of Geography, The University of British Columbia, 1984 West Mall, Vancouver, BC V6T 1Z2, Canada. E-mail: bencrawf@gmail.com

Abstract

Observations of carbon dioxide (CO2) mixing ratios in the urban boundary layer (UBL) are rare, even though there is potential for such measurements to be used to monitor city-scale net CO2 emissions. This work presents a unique dataset of CO2 mixing ratios observed in the UBL above Vancouver, British Columbia, Canada, by means of a tethered balloon system over a continuous 24-h summertime period. Vertical profiles of CO2 mixing ratios are found to vary according to UBL thermal structure and mechanical dynamics (development of convective and nocturnal boundary layers, vertical mixing from mechanical turbulence, horizontal advection from land–sea thermal breezes, and vertical entrainment). A box model is applied to quantify net city-scale surface emissions to the UBL volume using the measured rate of change of UBL CO2 mixing ratios and estimated CO2 advection and entrainment fluxes. The diurnal course of city-scale net emissions predicted by the model is similar to simultaneous local-scale eddy-covariance CO2 flux measurements, although there are relatively large uncertainties in hourly model calculations of horizontal advection and vertical entrainment fluxes due to inputs of regional background CO2 mixing ratios. Daily city-scale emissions totals predicted by the model (20.2 gC m−2 day−1) are 35% larger than those measured simultaneously on an urban local-scale eddy-covariance flux tower and are within 32% of a spatially scaled municipal greenhouse gas inventory. However, these methods are not expected to agree exactly because they represent different spatial source areas and include different CO2 source and sink processes.

Corresponding author address: B. Crawford, Dept. of Geography, The University of British Columbia, 1984 West Mall, Vancouver, BC V6T 1Z2, Canada. E-mail: bencrawf@gmail.com
Save
  • Batchvarova, E., and S.-E. Gryning, 1991: Applied model for the growth of the daytime mixed layer. Bound.-Layer Meteor., 56, 261274, doi:10.1007/BF00120423.

    • Search Google Scholar
    • Export Citation
  • Batchvarova, E., and S.-E. Gryning, 1994: An applied model for the height of the daytime mixed layer and the entrainment zone. Bound.-Layer Meteor., 71, 311323, doi:10.1007/BF00713744.

    • Search Google Scholar
    • Export Citation
  • Bell, N., and Coauthors, 2002: Methyl iodide: Atmospheric budget and use as a tracer of marine convection in global models. J. Geophys. Res., 107, 4340, doi:10.1029/2001JD001151.

    • Search Google Scholar
    • Export Citation
  • Benkley, C. W., and L. L. Schulman, 1979: Estimating hourly mixing depths from historical meteorological data. J. Appl. Meteor., 18, 772780, doi:10.1175/1520-0450(1979)018<0772:EHMDFH>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Bréon, F., and Coauthors, 2015: An attempt at estimating Paris area CO2 emissions from atmospheric concentration measurements. Atmos. Chem. Phys., 15, 17071727, doi:10.5194/acp-15-1707-2015.

    • Search Google Scholar
    • Export Citation
  • Campbell Scientific, 2015: HMP50 temperature and relative humidity probe. Campbell Scientific Instruction Manual, 20 pp. [Available online at https://s.campbellsci.com/documents/us/manuals/hmp50.pdf.]

  • Christen, A., and Z. Nesic, 2015: Calibration, pressure and temperature sensitivity of Vaisala GMM 220A CO2 sensors. University of British Columbia Tech. Rep., 8 pp. [Available online at http://hdl.handle.net/2429/55969.]

  • Christen, A., and Coauthors, 2011: Validation of modeled carbon-dioxide emissions from an urban neighborhood with direct eddy-covariance measurements. Atmos. Environ., 45, 60576069, doi:10.1016/j.atmosenv.2011.07.040.

    • Search Google Scholar
    • Export Citation
  • City of Vancouver, 2006: Open data catalogue. Accessed February 2015. [Available online at http://www.metrovancouver.org/data, http://www.metrovancouver.org/data.]

  • Cleugh, H., and T. Oke, 1986: Suburban-rural energy balance comparisons in summer for Vancouver, B.C. Bound.-Layer Meteor., 36, 351369, doi:10.1007/BF00118337.

    • Search Google Scholar
    • Export Citation
  • Cleugh, H., and C. Grimmond, 2001: Modelling regional scale surface energy exchanges and CBL growth in a heterogeneous, urban-rural landscape. Bound.-Layer Meteor., 98, 131, doi:10.1023/A:1018798928158.

    • Search Google Scholar
    • Export Citation
  • Crawford, B., and A. Christen, 2014: Spatial variability of carbon dioxide in the urban canopy layer and implications for flux measurements. Atmos. Environ., 98, 308322, doi:10.1016/j.atmosenv.2014.08.052.

    • Search Google Scholar
    • Export Citation
  • Crawford, B., and A. Christen, 2015: Spatial source attribution of measured urban eddy covariance CO2 fluxes. Theor. Appl. Climatol., 119, 733755, doi:10.1007/s00704-014-1124-0.

    • Search Google Scholar
    • Export Citation
  • Crawford, B., A. Christen, T. Oke, J. Voogt, and C. Grimmond, 2009: Observations of carbon dioxide fluxes in two suburban neighborhoods in Vancouver, Canada. Eighth Symp. on the Urban Environment, Phoenix, AZ, Amer. Meteor. Soc. [Available online at https://ams.confex.com/ams/89annual/webprogram/Paper146715.html.]

  • Crawford, B., A. Christen, and R. Ketler, 2010: Eddy covariance data processing and quality control procedures. EPiCC Tech. Rep. 1, 288 pp., doi:10.14288/1.0103593.

  • Environment Canada, 2013: Historical Climate Data Archive. Environment Canada, accessed 29 May 2013. [Available online at http://climate.weather.gc.ca/index_e.html.]

  • Font, A., C. Grimmond, S. Kotthaus, J.-A. Morguí, C. Stockdale, E. O’Connor, M. Priestman, and B. Barratt, 2015: Daytime CO2 urban surface fluxes from airborne measurements, eddy-covariance observations and emissions inventory in greater London. Environ. Pollut., 196, 98106, doi:10.1016/j.envpol.2014.10.001.

    • Search Google Scholar
    • Export Citation
  • Gallagher, J. P., I. G. McKendry, A. M. Macdonald, and W. R. Leaitch, 2011: Seasonal and diurnal variations in aerosol concentration on Whistler Mountain: Boundary layer influence and synoptic-scale controls. J. Appl. Meteor. Climatol., 50, 22102222, doi:10.1175/JAMC-D-11-028.1.

    • Search Google Scholar
    • Export Citation
  • Gioli, B., M. F. Carfora, V. Magliulo, M. C. Metallo, A. A. Poli, P. Toscano, and F. Miglietta, 2014: Aircraft mass budgeting to measure CO2 emissions of Rome, Italy. Environ. Monit. Assess., 186, 20532066, doi:10.1007/s10661-013-3517-4.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., 1998: Aerodynamic roughness of urban areas derived from wind observations. Bound.-Layer Meteor., 89, 124, doi:10.1023/A:1001525622213.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and T. R. Oke, 1991: An evapotranspiration-interception model for urban areas. Water Resour. Res., 27, 17391755, doi:10.1029/91WR00557.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., and T. R. Oke, 1999: Aerodynamic properties of urban areas derived from analysis of surface form. J. Appl. Meteor., 38, 12621292, doi:10.1175/1520-0450(1999)038<1262:APOUAD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Grimmond, C. S. B., T. King, F. Cropley, D. Nowak, and C. Souch, 2002: Local-scale fluxes of carbon dioxide in urban environments: Methodological challenges and results from Chicago. Environ. Pollut., 116 (Suppl.), S243S254, doi:10.1016/S0269-7491(01)00256-1.

    • Search Google Scholar
    • Export Citation
  • Kellett, R., A. Christen, N. C. Coops, M. van der Laan, B. Crawford, T. R. Tooke, and I. Olchovski, 2013: A systems approach to carbon cycling and emissions modeling at an urban neighborhood scale. Landscape Urban Plann., 110, 4858, doi:10.1016/j.landurbplan.2012.10.002.

    • Search Google Scholar
    • Export Citation
  • Kettle, A., U. Kuhn, M. Von Hobe, J. Kesselmeier, and M. Andreae, 2002: Global budget of atmospheric carbonyl sulfide: Temporal and spatial variations of the dominant sources and sinks. J. Geophys. Res., 107, 4658, doi:10.1029/2002JD002187.

    • Search Google Scholar
    • Export Citation
  • Kort, E. A., C. Frankenberg, C. E. Miller, and T. Oda, 2012: Space-based observations of megacity carbon dioxide. Geophys. Res. Lett., 39, L17806, doi:10.1029/2012GL052738.

    • Search Google Scholar
    • Export Citation
  • Kort, E. A., W. M. Angevine, R. Duren, and C. E. Miller, 2013: Surface observations for monitoring urban fossil fuel CO2 emissions: Minimum site location requirements for the Los Angeles megacity. J. Geophys. Res. Atmos., 118, 15771584, doi:10.1002/jgrd.50135.

    • Search Google Scholar
    • Export Citation
  • Li-Cor, 2015: Li-7500RS open path CO2/H20 gas analyzer instruction manual. Li-Cor Tech. Rep., 190 pp. [Available online at https://app.boxenterprise.net/s/c7tyf0czqn9ezkq1ki3b.]

  • Lin, J., C. Gerbig, S. Wofsy, A. Andrews, B. Daube, K. Davis, and C. Grainger, 2003: A near-field tool for simulating the upstream influence of atmospheric observations: The Stochastic Time-Inverted Lagrangian Transport (STILT) model. J. Geophys. Res., 108, 4493, doi:10.1029/2002JD003161.

    • Search Google Scholar
    • Export Citation
  • Liss, K., and R. Tooke, C. N., and A. Christen, 2010: Vegetation characteristics at the Vancouver EPiCC experimental sites. EPiCC Tech. Rep. 3, 45 pp. [Available online at http://ibis.geog.ubc.ca/~epicc/reports/Vancouver-EPiCC-Tech-Report-3.pdf.]

  • Mays, K. L., P. B. Shepson, B. H. Stirm, A. Karion, C. Sweeney, and K. R. Gurney, 2009: Aircraft-based measurements of the carbon footprint of Indianapolis. Environ. Sci. Technol., 43, 78167823, doi:10.1021/es901326b.

    • Search Google Scholar
    • Export Citation
  • McKain, K., S. C. Wofsy, T. Nehrkorn, J. Eluszkiewicz, J. R. Ehleringer, and B. B. Stephens, 2012: Assessment of ground-based atmospheric observations for verification of greenhouse gas emissions from an urban region. Proc. Natl. Acad. Sci. USA, 109, 84238428, doi:10.1073/pnas.1116645109.

    • Search Google Scholar
    • Export Citation
  • McKain, K., and Coauthors, 2015: Methane emissions from natural gas infrastructure and use in the urban region of Boston, Massachusetts. Proc. Natl. Acad. Sci., 112, 19411946, doi:10.1073/pnas.1416261112.

    • Search Google Scholar
    • Export Citation
  • McKendry, I., D. van der Kamp, K. Strawbridge, A. Christen, and B. Crawford, 2009: Simultaneous observations of boundary-layer aerosol layers with CL31 ceilometer and 1064/532 nm lidar. Atmos. Environ., 43, 58475852, doi:10.1016/j.atmosenv.2009.07.063.

    • Search Google Scholar
    • Export Citation
  • Oke, T., 1987: Boundary Layer Climates. Routledge, 464 pp.

  • Oke, T., and C. East, 1971: The urban boundary layer in Montreal. Bound.-Layer Meteor., 1, 411437, doi:10.1007/BF00184781.

  • Pataki, D., T. Xu, Y. Luo, and J. Ehleringer, 2007: Inferring biogenic and anthropogenic carbon dioxide sources across an urban to rural gradient. Oecologia, 152, 307322, doi:10.1007/s00442-006-0656-0.

    • Search Google Scholar
    • Export Citation
  • Raupach, M., 1995: Vegetation-atmosphere interaction and surface conductance at leaf, canopy and regional scales. Agric. For. Meteor., 73, 151179, doi:10.1016/0168-1923(94)05071-D.

    • Search Google Scholar
    • Export Citation
  • Reid, K., and D. Steyn, 1997: Diurnal variations of boundary-layer carbon dioxide in a coastal city—Observations and comparison with model results. Atmos. Environ., 31, 31013114, doi:10.1016/S1352-2310(97)00050-2.

    • Search Google Scholar
    • Export Citation
  • Roth, M., and T. R. Oke, 1995: Relative efficiencies of turbulent transfer of heat, mass, and momentum over a patchy urban surface. J. Atmos. Sci., 52, 18631874, doi:10.1175/1520-0469(1995)052<1863:REOTTO>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Satterthwaite, D., 2008: Cities’ contribution to global warming: Notes on the allocation of greenhouse gas emissions. Environ. Urban., 20, 539549, doi:10.1177/0956247808096127.

    • Search Google Scholar
    • Export Citation
  • Schmid, H., and C. Lloyd, 1999: Spatial representativeness and the location bias of flux footprints over inhomogeneous areas. Agric. For. Meteor., 93, 195209, doi:10.1016/S0168-1923(98)00119-1.

    • Search Google Scholar
    • Export Citation
  • Schmid, H., H. Cleugh, C. Grimmond, and T. Oke, 1991: Spatial variability of energy fluxes in suburban terrain. Bound.-Layer Meteor., 54, 249276, doi:10.1007/BF00183956.

    • Search Google Scholar
    • Export Citation
  • Statistics Canada, 2011: Census metropolitan area of Vancouver, British Columbia. Focus on Geography Series. [Available online at https://www12.statcan.gc.ca/census-recensement/2011/as-sa/fogs-spg/Facts-cma-eng.cfm?LANG=Eng&GK=CMA&GC=933.]

  • Stewart, I. D., and T. R. Oke, 2012: Local climate zones for urban temperature studies. Bull. Amer. Meteor. Soc., 93, 18791900, doi:10.1175/BAMS-D-11-00019.1.

    • Search Google Scholar
    • Export Citation
  • Steyn, D., and T. Oke, 1982: The depth of the daytime mixed layer at two coastal sites: A model and its validation. Bound.-Layer Meteor., 24, 161180, doi:10.1007/BF00121666.

    • Search Google Scholar
    • Export Citation
  • Strong, C., C. Stwertka, D. Bowling, B. Stephens, and J. Ehleringer, 2011: Urban carbon dioxide cycles within the Salt Lake Valley: A multiple-box model validated by observations. J. Geophys. Res. Atmos., 116, D15307, doi:10.1029/2011JD015693.

    • Search Google Scholar
    • Export Citation
  • Stull, R. B., 1988: An Introduction to Boundary Layer Meteorology. Atmospheric and Oceanographic Sciences Library, Vol. 13, Springer, 670 pp.

  • Stull, R. B., 2000: Meteorology for Scientists and Engineers. Brooks Cole, 528 pp.

  • Tooke, T., N. Coops, N. Goodwin, and J. Voogt, 2009: Extracting urban vegetation characteristics using spectral mixture analysis and decision tree classifications. Remote Sens. Environ., 113, 398407, doi:10.1016/j.rse.2008.10.005.

    • Search Google Scholar
    • Export Citation
  • Uno, I., S. Wakamatsu, H. Ueda, and A. Nakamura, 1988: An observational study of the structure of the nocturnal urban boundary layer. Bound.-Layer Meteor., 45, 5982, doi:10.1007/BF00120815.

    • Search Google Scholar
    • Export Citation
  • Vaisala, 2014: GMM220 CO2 transmitter modules. Vaisala Tech. Rep., 6 pp. [Available online at http://www.vaisala.com/Vaisala%20Documents/User%20Guides%20and%20Quick%20Ref%20Guides/GMM220%20User%20Guide%20in%20English.pdf.]

  • van der Kamp, D., and I. McKendry, 2010: Diurnal and seasonal trends in convective mixed-layer heights estimated from two years of continuous ceilometer observations in Vancouver, BC. Bound.-Layer Meteor., 137, 459475, doi:10.1007/s10546-010-9535-7.

    • Search Google Scholar
    • Export Citation
  • van der Laan, M., 2011: Scaling urban energy use and greenhouse gas emissions through LiDAR. M.S. thesis, Dept. of Geography, The University of British Columbia, 113 pp. [Available online at https://circle.ubc.ca/handle/2429/39860.]

  • Velasco, E., and M. Roth, 2010: Cities as net sources of CO2: Review of atmospheric CO2 exchange in urban environments measured by eddy covariance technique. Geogr. Compass, 4, 12381259, doi:10.1111/j.1749-8198.2010.00384.x.

    • Search Google Scholar
    • Export Citation
  • Vogel, F. R., B. Tiruchittampalam, J. Theloke, R. Kretschmer, C. Gerbig, S. Hammer, and I. Levin, 2013: Can we evaluate a fine-grained emission model using high-resolution atmospheric transport modelling and regional fossil fuel CO2 observations? Tellus, 65B, 18681, http://dx.doi.org/10.3402/tellusb.v65i0.18681.

    • Search Google Scholar
    • Export Citation
  • Walsh, C., 2005: Fluxes of radiation, energy, and carbon dioxide over a suburban area of Vancouver, BC. M.S. thesis, Dept. of Geography, The University of British Columbia, 123 pp. [Available online at https://open.library.ubc.ca/cIRcle/collections/ubctheses/831/items/1.0092555.]