Spatial and Temporal Variability of Rainfall in the Alps–Mediterranean Euroregion

Jean-François Rysman Université Pierre-et-Marie-Curie University of Paris 06, Paris, Université Versailles St-Quentin, Versailles, and CNRS/INSU, Laboratoire Atmosphères, Milieux, Observations Spatiales, Institut Pierre-Simon Laplace, Guyancourt, France

Search for other papers by Jean-François Rysman in
Current site
Google Scholar
PubMed
Close
,
Yvon Lemaître Université Pierre-et-Marie-Curie University of Paris 06, Paris, Université Versailles St-Quentin, Versailles, and CNRS/INSU, Laboratoire Atmosphères, Milieux, Observations Spatiales, Institut Pierre-Simon Laplace, Guyancourt, France

Search for other papers by Yvon Lemaître in
Current site
Google Scholar
PubMed
Close
, and
Emmanuel Moreau Novimet, Guyancourt, France

Search for other papers by Emmanuel Moreau in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

This study describes the main patterns of rainfall distribution in the Alps–Mediterranean “Euroregion” using a ground radar and characterizes the associated processes using model output. The radar dataset spans 2009–12 with fine spatial (1 km) and temporal (5 min) resolutions. The most significant rain accumulations were observed in 2009 and 2010, and the most intense extreme events occurred in 2010. Conversely, 2012 was a dry year. Model output revealed that the wind shear, the pressure, and the meridional wind at low level were the three main factors explaining the rainfall variability between 2009 and 2012. At the monthly scale, the maximum of rain accumulation was observed in November along the coast. Results also showed that the most intense rain rates were observed during early summer and autumn in the “Pre-Alps.” The monthly variability was characterized by a displacement of extreme rain events from land to sea from late spring to winter. Correlation analyses showed that this displacement was essentially controlled by the convective available potential energy (CAPE). Rainfall showed a diurnal variability from April to August for the land areas of the Alps–Mediterranean Euroregion. The diurnal variability was significant during the spring and summer months, with maximal rain intensity between 1600 and 1800 UTC. The correlation of the rainfall with CAPE showed that this cycle was related to atmospheric instability. A secondary peak in average rain rate was observed during the early morning and was likely triggered by land breezes. The results highlighted that rainfall characteristics are extremely diverse in terms of intensity and distribution in this relatively small region.

Corresponding author address: Jean-François Rysman, LATMOS, 11 Boulevard d’Alembert, 78280 Guyancourt, France. E-mail: rysman@latmos.ipsl.fr

Abstract

This study describes the main patterns of rainfall distribution in the Alps–Mediterranean “Euroregion” using a ground radar and characterizes the associated processes using model output. The radar dataset spans 2009–12 with fine spatial (1 km) and temporal (5 min) resolutions. The most significant rain accumulations were observed in 2009 and 2010, and the most intense extreme events occurred in 2010. Conversely, 2012 was a dry year. Model output revealed that the wind shear, the pressure, and the meridional wind at low level were the three main factors explaining the rainfall variability between 2009 and 2012. At the monthly scale, the maximum of rain accumulation was observed in November along the coast. Results also showed that the most intense rain rates were observed during early summer and autumn in the “Pre-Alps.” The monthly variability was characterized by a displacement of extreme rain events from land to sea from late spring to winter. Correlation analyses showed that this displacement was essentially controlled by the convective available potential energy (CAPE). Rainfall showed a diurnal variability from April to August for the land areas of the Alps–Mediterranean Euroregion. The diurnal variability was significant during the spring and summer months, with maximal rain intensity between 1600 and 1800 UTC. The correlation of the rainfall with CAPE showed that this cycle was related to atmospheric instability. A secondary peak in average rain rate was observed during the early morning and was likely triggered by land breezes. The results highlighted that rainfall characteristics are extremely diverse in terms of intensity and distribution in this relatively small region.

Corresponding author address: Jean-François Rysman, LATMOS, 11 Boulevard d’Alembert, 78280 Guyancourt, France. E-mail: rysman@latmos.ipsl.fr
Save
  • Argence, S., D. Lambert, E. Richard, J.-P. Chaboureau, and N. Söhne, 2008: Impact of initial condition uncertainties on the predictability of heavy rainfall in the Mediterranean: A case study. Quart. J. Roy. Meteor. Soc., 134, 17751788, doi:10.1002/qj.314.

    • Search Google Scholar
    • Export Citation
  • Atkinson, B., 1981: Meso-Scale Atmospheric Circulations. Academic Press, 495 pp.

  • Ban, N., J. Schmidli, and C. Schär, 2015: Heavy precipitation in a changing climate: Does short-term summer precipitation increase faster? Geophys. Res. Lett., 42, 11651172, doi:10.1002/2014GL062588.

    • Search Google Scholar
    • Export Citation
  • Berthou, S., S. Mailler, P. Drobinski, T. Arsouze, S. Bastin, K. Béranger, and C. Lebeaupin-Brossier, 2014: Prior history of mistral and tramontane winds modulates heavy precipitation events in southern France. Tellus, 66A, 24064, doi:10.3402/tellusa.v66.24064.

    • Search Google Scholar
    • Export Citation
  • Boccolari, M., and S. Malmusi, 2013: Changes in temperature and precipitation extremes observed in Modena, Italy. Atmos. Res., 122, 1631, doi:10.1016/j.atmosres.2012.10.022.

    • Search Google Scholar
    • Export Citation
  • Boudevillain, B., and Coauthors, 2009: Projet CYPRIM, partie I: Cyclogenses et précipitations intenses en région méditerranéenne: Origines et caractéristiques (CYPRIM project, part I: Cyclogenesis and intense precipitation in the Mediterranean region: Origins and characteristics). Meteorologie, 66, 1828, doi:10.4267/2042/28828.

    • Search Google Scholar
    • Export Citation
  • Brown, D., R. Brownrigg, M. Haley, and W. Huang, 2012: The NCAR Command Language (NCL) (version 6.0.0). UCAR/NCAR Computational and Information Systems Laboratory, doi:10.5065/D6WD3XH5.

  • Claud, C., B. Alhammoud, B. M. Funatsu, C. Lebeaupin Brossier, J.-P. Chaboureau, K. Béranger, and P. Drobinski, 2012: A high resolution climatology of precipitation and deep convection over the Mediterranean region from operational satellite microwave data: Development and application to the evaluation of model uncertainties. Nat. Hazards Earth Syst. Sci., 12, 785798, doi:10.5194/nhess-12-785-2012.

    • Search Google Scholar
    • Export Citation
  • Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553597, doi:10.1002/qj.828.

    • Search Google Scholar
    • Export Citation
  • Delrieu, G., and Coauthors, 2005: The catastrophic flash-flood event of 8–9 September 2002 in the Gard region, France: A first case study for the Cévennes Vivarais Mediterranean Hydrometeorological Observatory. J. Hydrometeor., 6, 34, doi:10.1175/JHM-400.1.

    • Search Google Scholar
    • Export Citation
  • Diss, S., J. Testud, J. Lavabre, P. Ribstein, E. Moreau, and J. Parent du Chatelet, 2009: Ability of a dual polarized X-band radar to estimate rainfall. Adv. Water Resour., 32, 975985, doi:10.1016/j.advwatres.2009.01.004.

    • Search Google Scholar
    • Export Citation
  • Dotzek, N., P. Groenemeijer, B. Feuerstein, and A. M. Holzer, 2009: Overview of ESSL’s severe convective storms research using the European Severe Weather Database ESWD. Atmos. Res., 93, 575586, doi:10.1016/j.atmosres.2008.10.020.

    • Search Google Scholar
    • Export Citation
  • Drobinski, P., and Coauthors, 2008: HyMeX—Towards a major field experiment in 2010–2020: White book. Météo-France–Centre National de Recherches Météorologiques Tech. Rep., 124 pp. [Available online at http://www.hymex.org/public/documents/WB_1.3.2.pdf.]

  • Drobinski, P., and Coauthors, 2014: HyMeX: A 10-year multidisciplinary program on the Mediterranean water cycle. Bull. Amer. Meteor. Soc., 95, 10631082, doi:10.1175/BAMS-D-12-00242.1.

    • Search Google Scholar
    • Export Citation
  • Ducrocq, V., O. Nuissier, D. Ricard, C. Lebeaupin, and T. Thouvenin, 2008: A numerical study of three catastrophic precipitating events over southern France. II: Mesoscale triggering and stationarity factors. Quart. J. Roy. Meteor. Soc., 134, 131145, doi:10.1002/qj.199.

    • Search Google Scholar
    • Export Citation
  • Ducrocq, V., and Coauthors, 2014: HyMeX-SOP1: The field campaign dedicated to heavy precipitation and flash flooding in the northwestern Mediterranean. Bull. Amer. Meteor. Soc., 95, 10831100, doi:10.1175/BAMS-D-12-00244.1.

    • Search Google Scholar
    • Export Citation
  • Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 30773107, doi:10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Duffourg, F., and V. Ducrocq, 2011: Origin of the moisture feeding the heavy precipitating systems over southeastern France. Nat. Hazards Earth Syst. Sci., 11, 11631178, doi:10.5194/nhess-11-1163-2011.

    • Search Google Scholar
    • Export Citation
  • Duffourg, F., and V. Ducrocq, 2013: Assessment of the water supply to Mediterranean heavy precipitation: A method based on finely designed water budgets. Atmos. Sci. Lett., 14, 133138, doi:10.1002/asl2.429.

    • Search Google Scholar
    • Export Citation
  • Frei, C., and C. Schär, 1998: A precipitation climatology of the Alps from high-resolution rain-gauge observations. Int. J. Climatol., 18, 873900, doi:10.1002/(SICI)1097-0088(19980630)18:8<873::AID-JOC255>3.0.CO;2-9.

    • Search Google Scholar
    • Export Citation
  • Fresnay, S., 2014: Prévisibilité des épisodes météorologiques à fort impact: Sensibilité aux anomalies d’altitude (Predictability of high-impact weather events: Sensitivity to altitude anomalies). Ph.D. thesis, Université Paul Sabatier-Toulouse III, 200 pp. [Available online at https://tel.archives-ouvertes.fr/tel-00986467/file/these_fresnay.pdf.]

  • Funatsu, B. M., C. Claud, and J.-P. Chaboureau, 2008: A 6-year AMSU-based climatology of upper-level troughs and associated precipitation distribution in the Mediterranean region. J. Geophys. Res., 113, D15120, doi:10.1029/2008JD009918.

    • Search Google Scholar
    • Export Citation
  • Funatsu, B. M., C. Claud, and J.-P. Chaboureau, 2009: Comparison between the large-scale environments of moderate and intense precipitating systems in the Mediterranean region. Mon. Wea. Rev., 137, 39333959, doi:10.1175/2009MWR2922.1.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., C. Jones, G. R. Asrar, 2009: Addressing climate information needs at the regional level: The CORDEX framework. WMO Bull., 58, 175183. [Available online at http://www.wmo.int/pages/publications/bulletinarchive/archive/58_3_en/documents/58_3_giorgi_en.pdf.]

    • Search Google Scholar
    • Export Citation
  • Gladich, I., I. Gallai, D. B. Giaiotti, and F. Stel, 2011: On the diurnal cycle of deep moist convection in the southern side of the Alps analysed through cloud-to-ground lightning activity. Atmos. Res., 100, 371376, doi:10.1016/j.atmosres.2010.08.026.

    • Search Google Scholar
    • Export Citation
  • Haylock, M. R., and C. M. Goodess, 2004: Interannual variability of European extreme winter rainfall and links with mean large-scale circulation. Int. J. Climatol., 24, 759776, doi:10.1002/joc.1033.

    • Search Google Scholar
    • Export Citation
  • Hong, S.-Y., J. Dudhia, and S.-H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103120, doi:10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170181, doi:10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Karagiannidis, A. F., A. A. Bloutsos, P. Maheras, and C. Sachsamanoglou, 2008: Some statistical characteristics of precipitation in Europe. Theor. Appl. Climatol., 91, 193204, doi:10.1007/s00704-007-0303-7.

    • Search Google Scholar
    • Export Citation
  • Kömüşçü, A. M., 1998: Analysis of meteorological and terrain features leading to the Izmir flash flood, 3–4 November 1995. Nat. Hazards, 18, 125, doi:10.1023/A:1008078920113.

    • Search Google Scholar
    • Export Citation
  • Landin, M. G., and L. F. Bosart, 1989: The diurnal variation of precipitation in California and Nevada. Mon. Wea. Rev., 117, 18011816, doi:10.1175/1520-0493(1989)117<1801:TDVOPI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Le Bouar, E., E. Moreau, and J. Testud, 2008: The rain accumulation product from the X-band polarimetric radar Hydrix. Int. Symp. on Weather Radar and Hydrology, Grenoble/Autrans, France, LTHE–OHMCV.

  • Lemaître, Y., J.-F. Rysman, S. Verrier, and E. Moreau, 2013: Le radar en bande X: Un outil au service de l’étude des événements precipitants (X-band radar: A tool for studying precipitation events). Meteorologie, 83, 5058. [Available online at http://documents.irevues.inist.fr/handle/2042/52054.]

    • Search Google Scholar
    • Export Citation
  • Lin, C., S. Vasić, A. Kilambi, B. Turner, and I. Zawadzki, 2005: Precipitation forecast skill of numerical weather prediction models and radar nowcasts. Geophys. Res. Lett., 32, L14801, doi:10.1029/2005GL023451.

    • Search Google Scholar
    • Export Citation
  • Lionello, P., P. Malanotte-Rizzoli, and R. Boscolo, 2006: Mediterranean Climate Variability. Developments in Earth and Environmental Sciences, Vol. 4, Elsevier, 438 pp.

  • Mandapaka, P. V., U. Germann, and L. Panziera, 2012: Diurnal cycle of precipitation over complex Alpine orography: Inferences from high-resolution radar observations. Quart. J. Roy. Meteor. Soc., 139, 10251046, doi:10.1002/qj.2013.

    • Search Google Scholar
    • Export Citation
  • Mariotti, A., M. Vittoria Struglia, N. Zeng, and K.-M. Lau, 2002a: The hydrological cycle in the Mediterranean region and implications for the water budget of the Mediterranean Sea. J. Climate, 15, 16741690, doi:10.1175/1520-0442(2002)015<1674:THCITM>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Mariotti, A., N. Zeng, and K.-M. Lau, 2002b: Euro-Mediterranean rainfall and ENSO—A seasonally varying relationship. Geophys. Res. Lett., 29, 1621, doi:10.1029/2001GL014248.

    • Search Google Scholar
    • Export Citation
  • Mlawer, E. J., S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16 66316 682, doi:10.1029/97JD00237.

    • Search Google Scholar
    • Export Citation
  • Moreau, E., J. Testud, and E. Le Bouar, 2009: Rainfall spatial variability observed by X-band weather radar and its implication for the accuracy of rainfall estimates. Adv. Water Resour., 32, 10111019, doi:10.1016/j.advwatres.2008.11.007.

    • Search Google Scholar
    • Export Citation
  • Nastos, P., J. Kapsomenakis, and K. Douvis, 2013: Analysis of precipitation extremes based on satellite and high-resolution gridded data set over Mediterranean basin. Atmos. Res., 131, 4659, doi:10.1016/j.atmosres.2013.04.009.

    • Search Google Scholar
    • Export Citation
  • Nittis, K., C. Tziavos, R. Bozzano, V. Cardin, Y. Thanos, G. Petihakis, M. E. Schiano, and F. Zanon, 2007: The M3A multi-sensor buoy network of the Mediterranean Sea. Ocean Sci., 3, 229243, doi:10.5194/os-3-229-2007.

    • Search Google Scholar
    • Export Citation
  • Noh, Y., W. Cheon, S. Hong, and S. Raasch, 2003: Improvement of the k-profile model for the planetary boundary layer based on large eddy simulation data. Bound.-Layer Meteor., 107, 401427, doi:10.1023/A:1022146015946.

    • Search Google Scholar
    • Export Citation
  • Nuissier, O., V. Ducrocq, D. Ricard, C. Lebeaupin, and S. Anquetin, 2008: A numerical study of three catastrophic precipitating events over southern France. I: Numerical framework and synoptic ingredients. Quart. J. Roy. Meteor. Soc., 134, 111130, doi:10.1002/qj.200.

    • Search Google Scholar
    • Export Citation
  • Oki, T., and K. Musiake, 1994: Seasonal change of the diurnal cycle of precipitation over Japan and Malaysia. J. Appl. Meteor., 33, 14451463, doi:10.1175/1520-0450(1994)033<1445:SCOTDC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Orlanski, I., 1975: A rational subdivision of scales for atmospheric processes. Bull. Amer. Meteor. Soc., 56, 527530.

  • Panziera, L., and U. Germann, 2010: The relation between airflow and orographic precipitation on the southern side of the Alps as revealed by weather radar. Quart. J. Roy. Meteor. Soc., 136, 222238, doi:10.1002/qj.544.

    • Search Google Scholar
    • Export Citation
  • Panziera, L., U. Germann, M. Gabella, and P. V. Mandapaka, 2011: NORA—Nowcasting of Orographic Rainfall by means of Analogues. Quart. J. Roy. Meteor. Soc., 137, 21062123, doi:10.1002/qj.878.

    • Search Google Scholar
    • Export Citation
  • Price, C., L. Stone, A. Huppert, B. Rajagopalan, and P. Alpert, 1998: A possible link between El Niño and precipitation in Israel. Geophys. Res. Lett., 25, 39633966, doi:10.1029/1998GL900098.

    • Search Google Scholar
    • Export Citation
  • Rebora, N., and Coauthors, 2013: Extreme rainfall in the Mediterranean: What can we learn from observations? J. Hydrometeor., 14, 906922, doi:10.1175/JHM-D-12-083.1.

    • Search Google Scholar
    • Export Citation
  • Ricard, D., V. Ducrocq, and L. Auger, 2012: A climatology of the mesoscale environment associated with heavily precipitating events over a northwestern Mediterranean area. J. Appl. Meteor. Climatol., 51, 468488, doi:10.1175/JAMC-D-11-017.1.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., and J. B. Klemp, 1982: The influence of the shear-induced pressure gradient on thunderstorm motion. Mon. Wea. Rev., 110, 136, doi:10.1175/1520-0493(1982)110<0136:TIOTSI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rotunno, R., J. B. Klemp, and M. L. Weisman, 1988: A theory for strong, long-lived squall lines. J. Atmos. Sci., 45, 463485, doi:10.1175/1520-0469(1988)045<0463:ATFSLL>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Rudolph, J. V., K. Friedrich, and U. Germann, 2011: Relationship between radar-estimated precipitation and synoptic weather patterns in the European Alps. J. Appl. Meteor. Climatol., 50, 944957, doi:10.1175/2010JAMC2570.1.

    • Search Google Scholar
    • Export Citation
  • Rysman, J.-F., 2013: Caractérisation multi-échelles de la pluie et des processus associés dans l’Eurorégion Alpes-Méditerranée - De l’observation radar à la prévision (Multiscale characterization of precipitation and associated processes in the Alps–Mediterranean Euroregion—From radar observation to forecast). Ph.D. thesis, Université Pierre et Marie Curie, 258 pp. [Available online at https://hal.archives-ouvertes.fr/tel-01119716.]

  • Rysman, J.-F., S. Verrier, Y. Lemaître, and E. Moreau, 2013: Space–time variability of the rainfall over the western Mediterranean region: A statistical analysis. J. Geophys. Res. Atmos., 118, 84488459, doi:10.1002/jgrd.50656.

    • Search Google Scholar
    • Export Citation
  • Rysman, J.-F., C. Claud, J.-P. Chaboureau, J. Delanoë, and B. M. Funatsu, 2016: Severe convection in the Mediterranean from microwave observations and a convection-permitting model. Quart. J. Roy. Meteor. Soc., doi:10.1002/qj.2611, in press.

    • Search Google Scholar
    • Export Citation
  • Sénési, S., P. Bougeault, J.-L. Chèze, P. Cosentino, and R.-M. Thepenier, 1996: The Vaison-La-Romaine flash flood: Mesoscale analysis and predictability issues. Wea. Forecasting, 11, 417442, doi:10.1175/1520-0434(1996)011<0417:TVLRFF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Silvestro, F., S. Gabellani, F. Giannoni, A. Parodi, N. Rebora, R. Rudari, and F. Siccardi, 2012: A hydrological analysis of the 4 November 2011 event in Genoa. Nat. Hazards Earth Syst. Sci., 12, 27432752, doi:10.5194/nhess-12-2743-2012.

    • Search Google Scholar
    • Export Citation
  • Simmons, A., S. Uppala, D. Dee, and S. Kobayashi, 2007: ERA-Interim: New ECMWF reanalysis products from 1989 onwards. ECMWF Newsletter, No. 110, ECMWF, Reading, United Kingdom, 25–35.

  • Skamarock, W., J. Klemp, J. Dudhia, D. Gill, and D. Barker, 2008: A description of the Advanced Research WRF version 3. NCAR Tech. Rep. NCAR/TN-475+STR, 113 pp. [Available online at http://www2.mmm.ucar.edu/wrf/users/docs/arw_v3.pdf.]

  • Smirnova, T. G., J. M. Brown, and S. G. Benjamin, 1997: Performance of different soil model configurations in simulating ground surface temperature and surface fluxes. Mon. Wea. Rev., 125, 18701884, doi:10.1175/1520-0493(1997)125<1870:PODSMC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Smirnova, T. G., J. M. Brown, S. G. Benjamin, and D. Kim, 2000: Parameterization of cold-season processes in the MAPS land-surface scheme. J. Geophys. Res., 105, 40774086, doi:10.1029/1999JD901047.

    • Search Google Scholar
    • Export Citation
  • Smith, R. B., Q. Jiang, M. G. Fearon, P. Tabary, M. Dorninger, J. D. Doyle, and R. Benoit, 2003: Orographic precipitation and air mass transformation: An Alpine example. Quart. J. Roy. Meteor. Soc., 129, 433454, doi:10.1256/qj.01.212.

    • Search Google Scholar
    • Export Citation
  • Stéfanon, M., P. Drobinski, F. D. Andrea, C. Lebeaupin-Brossier, and S. Bastin, 2013: Soil moisture–temperature feedbacks at meso-scale during summer heat waves over western Europe. Climate Dyn., 42, 13091324, doi:10.1007/s00382-013-1794-9.

    • Search Google Scholar
    • Export Citation
  • Svensson, C., and D. Jakob, 2002: Diurnal and seasonal characteristics of precipitation at an upland site in Scotland. Int. J. Climatol., 22, 587598, doi:10.1002/joc.674.

    • Search Google Scholar
    • Export Citation
  • Tapiador, F. J., and Coauthors, 2012: Global precipitation measurement: Methods, datasets and applications. Atmos. Res., 104–105, 7097, doi:10.1016/j.atmosres.2011.10.021.

    • Search Google Scholar
    • Export Citation
  • Testud, J., E. Le Bouar, E. Obligis, and M. Ali-Mehenni, 2000: The rain profiling algorithm applied to polarimetric weather radar. J. Atmos. Oceanic Technol., 17, 332356, doi:10.1175/1520-0426(2000)017<0332:TRPAAT>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Testud, J., J. Lavabre, S. Diss, P. Tabary, and G. Scialom, 2007: Hydrix radar in FRAMEA—Evaluation of an X band polarimetric radar using a quasi-co located S band radar and a raingauge network. Proc. Int. Symp. on X Band Weather Radar Network, Tsukuba, Japan, National Research Institute for Earth Science and Disaster Prevention. [Available online at http://www.novimet.com/download/Testud%20et%20al_Japan_2007.pdf.]

  • Vasić, S., C. A. Lin, I. Zawadzki, O. Bousquet, and D. Chaumont, 2007: Evaluation of precipitation from numerical weather prediction models and satellites using values retrieved from radars. Mon. Wea. Rev., 135, 37503766, doi:10.1175/2007MWR1955.1.

    • Search Google Scholar
    • Export Citation
  • Walser, A., and C. Schar, 2004: Convection-resolving precipitation forecasting and its predictability in Alpine river catchments. J. Hydrol., 288, 5773, doi:10.1016/j.jhydrol.2003.11.035.

    • Search Google Scholar
    • Export Citation
  • Weisman, M. L., and R. Rotunno, 2000: The use of vertical wind shear versus helicity in interpreting supercell dynamics. J. Atmos. Sci., 57, 14521472, doi:10.1175/1520-0469(2000)057<1452:TUOVWS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Wüest, M., C. Frei, A. Altenhoff, M. Hagen, M. Litschi, and C. Schär, 2010: A gridded hourly precipitation dataset for Switzerland using rain-gauge analysis and radar-based disaggregation. Int. J. Climatol., 30, 17641775, doi:10.1002/joc.2025.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 980 355 99
PDF Downloads 258 44 2