Nearest Neighbor–Genetic Algorithm for Downscaling of Climate Change Data from GCMs

Soojun Kim Columbia Water Center, Columbia University, New York, New York

Search for other papers by Soojun Kim in
Current site
Google Scholar
PubMed
Close
,
Jaewon Kwak Forecast and Control Division, Nakdong River Flood Control Office, Busan, South Korea

Search for other papers by Jaewon Kwak in
Current site
Google Scholar
PubMed
Close
,
Hung Soo Kim Department of Civil Engineering, Inha University, Incheon, South Korea

Search for other papers by Hung Soo Kim in
Current site
Google Scholar
PubMed
Close
,
Younghun Jung Institute of Environmental Research, Kangwon National University, Chuncheon, Gangwon, South Korea

Search for other papers by Younghun Jung in
Current site
Google Scholar
PubMed
Close
, and
Gilho Kim Water Resources Research Division, Korea Institute of Civil Engineering and Building Technology, Goyang, Gyeonggi, South Korea

Search for other papers by Gilho Kim in
Current site
Google Scholar
PubMed
Close
Restricted access

We are aware of a technical issue preventing figures and tables from showing in some newly published articles in the full-text HTML view.
While we are resolving the problem, please use the online PDF version of these articles to view figures and tables.

Abstract

The spatial and temporal resolution of readily available climate change projections from general circulation models (GCM) has limited applicability. Consequently, several downscaling methods have been developed. These methods predominantly focus on a single meteorological series at specific sites. Spatial and temporal correlation of the precipitation and temperature fields is important for hydrologic applications. This research uses a nearest neighbor–genetic algorithm (NN–GA) method to analyze the Namhan River basin in the Korean Peninsula. Using the simulation results of the CNRM-CM for the RCP 8.5 climate change scenario, archived in the fifth phase of the Coupled Model Intercomparison Project (CMIP5), the GCM projections are downscaled through the NN–GA. The NN–GA simulations reproduce the features of the observed series in terms of site statistics as well as across variables and sites.

Current affiliation: K-water Institute, Yuseong-gu, Daejeon, South Korea.

Corresponding author address: Hung Soo Kim, Department of Civil Engineering, Inha University, Yonghyun-Dong, Nam-gu, Inchon 402-751, South Korea. E-mail: sookim@inha.ac.kr.

Abstract

The spatial and temporal resolution of readily available climate change projections from general circulation models (GCM) has limited applicability. Consequently, several downscaling methods have been developed. These methods predominantly focus on a single meteorological series at specific sites. Spatial and temporal correlation of the precipitation and temperature fields is important for hydrologic applications. This research uses a nearest neighbor–genetic algorithm (NN–GA) method to analyze the Namhan River basin in the Korean Peninsula. Using the simulation results of the CNRM-CM for the RCP 8.5 climate change scenario, archived in the fifth phase of the Coupled Model Intercomparison Project (CMIP5), the GCM projections are downscaled through the NN–GA. The NN–GA simulations reproduce the features of the observed series in terms of site statistics as well as across variables and sites.

Current affiliation: K-water Institute, Yuseong-gu, Daejeon, South Korea.

Corresponding author address: Hung Soo Kim, Department of Civil Engineering, Inha University, Yonghyun-Dong, Nam-gu, Inchon 402-751, South Korea. E-mail: sookim@inha.ac.kr.
Save
  • Bardossy, A., J. Stehlík, and H. J. Caspary, 2002: Automated objective classification of daily circulation patterns for precipitation and temperature downscaling based on optimized fuzzy rules. Climate Res., 23, 1122, doi:10.3354/cr023011.

    • Search Google Scholar
    • Export Citation
  • Bardossy, A., I. Bogardi, and I. Matyasovszky, 2005: Fuzzy rule-based downscaling of precipitation. Theor. Appl. Climatol., 82, 119129, doi:10.1007/s00704-004-0121-0.

    • Search Google Scholar
    • Export Citation
  • Benestad, R. E., I. Hanssen-Bauer, and D. Chen, 2009: Empirical–Statistical Downscaling. World Scientific, 228 pp.

  • Bhattacharjya, R. K., 2004: Optimal design of unit hydrographs using probability distribution and genetic algorithms. Sadhana, 29, 499508, doi:10.1007/BF02703257.

    • Search Google Scholar
    • Export Citation
  • Busuioc, A., D. Chen, and C. Hellstrom, 2001: Temporal and spatial variability of precipitation in Sweden and its link with large-scale circulation. Tellus, 53A, 348367, doi:10.1034/j.1600-0870.2001.01152.x.

    • Search Google Scholar
    • Export Citation
  • Casdagli, M., 1992: Dynamical systems approach to modeling input–output systems. Nonlinear Modeling and Forecasting, M. Casdagli and S. Eubank, Eds., Santa Fe Institute Series, Book 12, AddisonWesley, 265–281.

  • Casdagli, M., and A. Weigend, 1994: Exploring the continuum between deterministic and stochastic modeling. Forecasting the Future and Understanding the Past, A.S. Weigend and N.A. Gershenfeld, Eds., Santa Fe Institute Series, Book 15, Addison–Wesley, 347–366.

  • Chang, C. L., S. L. Lo, and S. L. Yu, 2006: The parameter optimization in the inverse distance method by genetic algorithm for estimating precipitation. Environ. Monit. Assess., 117, 145155, doi:10.1007/s10661-006-8498-0.

    • Search Google Scholar
    • Export Citation
  • Chen, T. S., P. S. Yu, and Y. H. Tang, 2010: Statistical downscaling of daily precipitation using support vector machines and multivariate analysis. J. Hydrol., 385, 1322, doi:10.1016/j.jhydrol.2010.01.021.

    • Search Google Scholar
    • Export Citation
  • Dibike, Y. B., and P. Coulibaly, 2006: Temporal neural network for downscaling climate variability and extremes. Neural Networks, 19, 135144, doi:10.1016/j.neunet.2006.01.003.

    • Search Google Scholar
    • Export Citation
  • Donatelli, M., and G. S. Campbell, 1997: A simple model to estimate global solar radiation. Research Institute for Industrial Crops PANDA Project Res. Pap. 26, 3 pp.

  • Fowler, H. J., C. G. Kilsby, and P. E. O’Connell, 2000: A stochastic rainfall model for the assessment of regional water resource systems under changed climatic conditions. Hydrol. Earth Syst. Sci., 4, 263281, doi:10.5194/hess-4-263-2000.

    • Search Google Scholar
    • Export Citation
  • Frias, M. D., E. Zorita, J. Fernandez, and C. Rodriguez-Puebla, 2006: Testing statistical downscaling methods in simulated climates. Geophys. Res. Lett., 33, L19807, doi:10.1029/2006GL027453.

    • Search Google Scholar
    • Export Citation
  • Giorgi, F., and Coauthors, 2001: Regional climate information—Evaluation and projections. Climate Change 2001: The Scientific Basis, J. T. Houghton et al., Eds., Cambridge University Press, 583–638.

  • Goodess, C. M., and J. P. Palutikof, 1998: Development of daily rainfall scenarios for southeast Spain using a circulation-type approach to downscaling. Int. J. Climatol., 18, 10511083, doi:10.1002/(SICI)1097-0088(199808)18:10<1051::AID-JOC304>3.0.CO;2-1.

    • Search Google Scholar
    • Export Citation
  • Goodess, C. M., and Coauthors, 2005: An intercomparison of statistical downscaling methods for Europe and European regions—Assessing their performance with respect to extreme temperature and precipitation events. Climatic Research Unit Tech. Rep. CRU RP 11, 69 pp. [Available online at http://www.cru.uea.ac.uk/cru/pubs/crurp/CRU_RP11.pdf.]

    • Search Google Scholar
    • Export Citation
  • Gutmann, E. D., R. M. Rasmussen, C. Liu, K. Ikeda, D. J. Gochis, M. P. Clark, J. Dudhia, and G. Thompson, 2012: A comparison of statistical and dynamical downscaling of winter precipitation over complex terrain. J. Climate, 25, 262281, doi:10.1175/2011JCLI4109.1.

    • Search Google Scholar
    • Export Citation
  • Hay, L. E., and M. P. Clark, 2003: Use of statistically and dynamically downscaled atmospheric model output for hydrologic simulations in three mountainous basins in the western United States. J. Hydrol., 282, 5675, doi:10.1016/S0022-1694(03)00252-X.

    • Search Google Scholar
    • Export Citation
  • Holland, J. H., 1975: Adaptation in Natural and Artificial Systems. University of Michigan Press, 211 pp.

  • Huntington, T. G., 2006: Evidence for intensification of the global water cycle: Review and synthesis. J. Hydrol., 319, 8395, doi:10.1016/j.jhydrol.2005.07.003.

    • Search Google Scholar
    • Export Citation
  • Huth, R., 2002: Statistical downscaling of daily temperature in central Europe. J. Climate, 15, 17311742, doi:10.1175/1520-0442(2002)015<1731:SDODTI>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • IPCC, 2001: Climate Change 2001: The Scientific Basis. Cambridge University Press, 881 pp.

  • IPCC, 2013: Climate Change 2013: The Physical Science Basis. Cambridge University Press, 1535 pp., doi:10.1017/CBO9781107415324.

  • Jones, P. G., and P. K. Thornton, 2013: Generating downscaled weather data from a suite of climate models for agricultural modelling applications. Agric. Syst., 114, 15, doi:10.1016/j.agsy.2012.08.002.

    • Search Google Scholar
    • Export Citation
  • Karl, T. R., W. C. Wang, M. E. Schlesinger, R. W. Knight, and D. Portman, 1990: A method of relating general circulation model simulated climate to the observed local climate. Part I: Seasonal statistics. J. Climate, 3, 10531079, doi:10.1175/1520-0442(1990)003<1053:AMORGC>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Khalil, A. F., H. H. Kwon, U. Lall, and Y. H. Kaheil, 2010: Predictive downscaling based on non-homogeneous hidden Markov models. Hydrol. Sci. J., 55, 333350, doi:10.1080/02626661003780342.

    • Search Google Scholar
    • Export Citation
  • Kilsby, C. G., and Coauthors, 2007: A daily weather generator for use in climate change studies. Environ. Modell. Software, 22, 17051719, doi:10.1016/j.envsoft.2007.02.005.

    • Search Google Scholar
    • Export Citation
  • Klein Tank, A. M. G., F. W. Zwiers, and X. Zhang, 2009: Guidelines on analysis of extremes in a changing climate in support of informed decisions for adaptation. WMO Tech. Doc. WMO/TD-1500, 53 pp.

  • Kyoung, M., H. S. Kim, B. Sivakumar, V. P. Singh, and K. S. Ahn, 2011: Dynamic characteristics of monthly rainfall in the Korean peninsula under climate change. Stochastic Environ. Res. Risk Assess., 25, 613625, doi:10.1007/s00477-010-0425-9.

    • Search Google Scholar
    • Export Citation
  • Pasini, A., and R. Langone, 2010: Attribution of precipitation changes on a regional scale by neural network modeling: A case study. Water, 2, 321332, doi:10.3390/w2030321.

    • Search Google Scholar
    • Export Citation
  • Pasini, A., and R. Langone, 2012: Influence of circulation patterns on temperature behavior at the regional scale: A case study investigated via neural network modeling. J. Climate, 25, 21232128, doi:10.1175/JCLI-D-11-00551.1.

    • Search Google Scholar
    • Export Citation
  • Pasini, A., and G. Modugno, 2013: Climatic attribution at the regional scale: A case study on the role of circulation patterns and external forcings. Atmos. Sci. Lett., 14, 301305, doi:10.1002/asl2.463.

    • Search Google Scholar
    • Export Citation
  • Ragab, R., B. Austin, and D. Moidinis, 2001: The HYDROMED model and its application to semi-arid Mediterranean catchments with hill reservoirs 1: The rainfall-runoff model using a genetic algorithm for optimisation. Hydrol. Earth Syst. Sci., 5, 543553.

    • Search Google Scholar
    • Export Citation
  • Reca, J., and J. Martinez, 2006: Genetic algorithms for the design of looped irrigation water distribution networks. Water Resour. Res., 42, W05416, doi:10.1029/2005WR004383.

    • Search Google Scholar
    • Export Citation
  • Richardson, C. W., 1981: Stochastic simulation of daily precipitation, temperature and solar radiation. Water Resour. Res., 17, 182190, doi:10.1029/WR017i001p00182.

    • Search Google Scholar
    • Export Citation
  • Robertson, A. W., V. M. I. Amor, and W. H. James, 2007: Downscaling of seasonal precipitation for crop simulation. J. Appl. Meteor. Climatol., 46, 677693, doi:10.1175/JAM2495.1.

    • Search Google Scholar
    • Export Citation
  • Schmidli, J., C. M. Goodess, C. Frei, M. R. Haylock, Y. Hundecha, J. Ribalaygua, and T. Schmith, 2007: Statistical and dynamical downscaling of precipitation: An evaluation and comparison of scenarios for the European Alps. J. Geophys. Res., 112, D04105, doi:10.1029/2005JD007026.

    • Search Google Scholar
    • Export Citation
  • Spak, S., T. Holloway, B. Lynn, and R. Goldberg, 2007: A comparison of statistical and dynamical downscaling for surface temperature in North America. J. Geophys. Res., 112, D08101, doi:10.1029/2005JD006712.

    • Search Google Scholar
    • Export Citation
  • Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An overview of CMIP5 and the experiment design. Bull. Amer. Meteor. Soc., 93, 485498, doi:10.1175/BAMS-D-11-00094.1.

    • Search Google Scholar
    • Export Citation
  • Tomozeiu, R., C. Cacciamani, V. Pavan, A. Morgillo, and A. Busuioc, 2006: Climate change scenarios of surface temperature in Emilia-Romagna (Italy) obtained using statistical downscaling models. Theor. Appl. Climatol., 90, 2547, doi:10.1007/s00704-006-0275-z.

    • Search Google Scholar
    • Export Citation
  • Voldoire, A., and Coauthors, 2013: The CNRM-CM5.1 global climate model: Description and basic evaluation. Climate Dyn., 40, 20912121, doi:10.1007/s00382-011-1259-y.

    • Search Google Scholar
    • Export Citation
  • von Storch, H., E. Zorita, and U. Cubash, 1993: Downscaling of global climate change estimates to regional scales: An application to Iberian rainfall in wintertime. J. Climate, 6, 11611171, doi:10.1175/1520-0442(1993)006<1161:DOGCCE>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Watts, M., Goodess C. M., and Jones P. D., 2004: The CRU daily weather generator. Built Environment: Weather Scenarios for Investigation of Impacts and Extremes Tech. Note 1, version 2, 7 pp. [Available online at http://www.cru.uea.ac.uk/cru/projects/betwixt/documents/BETWIXT_TBN_1_v22.pdf.]

  • Wigley T. M. L., P. D. Jones, K. R. Briffa, and G. Smith, 1990: Obtaining sub-grid-scale information from coarse-resolution general circulation model output. J. Geophys. Res., 95, 19431953, doi:10.1029/JD095iD02p01943.

    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., C. W. Dawson, and E. M. Barrow, 2002: SDSM—A decision support tool for the assessment of regional climate change impacts. Environ. Modell. Software, 17, 145157, doi:10.1016/S1364-8152(01)00060-3.

    • Search Google Scholar
    • Export Citation
  • Wilby, R. L., S. P. Charles, E. Zorita, B. Timbal, P. Whetton, and L. O. Mearns, 2004: Guidelines for use of climate scenarios developed from statistical downscaling methods. IPCC Tech. Rep., 27 pp. [Available online at http://www.ipcc-data.org/guidelines/dgm_no2_v1_09_2004.pdf.]

  • Yuval, and W. W. Hsieh, 2003: An adaptive nonlinear scheme for precipitation forecasts using neural networks. Wea. Forecasting, 18, 303310, doi:10.1175/1520-0434(2003)018<0303:AANMSF>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
  • Zorita, E., and H. von Storch, 1999: The analogue method as a simple statistical downscaling technique: Comparison with more complicated methods. J. Climate, 12, 24742489, doi:10.1175/1520-0442(1999)012<2474:TAMAAS>2.0.CO;2.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 607 253 79
PDF Downloads 338 73 7